» Articles » PMID: 21962576

Computational Techniques Are Valuable Tools for the Discovery of Protein-protein Interaction Inhibitors: the 14-3-3σ Case

Overview
Specialty Biochemistry
Date 2011 Oct 4
PMID 21962576
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Targeting the binding site of 14-3-3 proteins lets the release of partner proteins involved in cell cycle progression, apoptosis, cytoskeletal rearrangement and transcriptional regulation and may therefore be regarded as an alternative strategy to integrate conventional therapeutic approaches against cancer. In the present work, we report the identification of two new small molecule inhibitors of 14-3-3σ/c-Abl protein-protein interaction (BV01 and BV101) discovered by means of computational methods. The most interesting compound (BV01) showed a lethal dose (LD(50)) in the low micromolar range against Ba/F3 murine cell lines expressing the Imatinib (IM)-sensitive wild type Bcr-Abl construct and the IM-resistant Bcr-Abl mutation T315I. BV01 interaction with 14-3-3σ was demonstrated by NMR studies and elucidated by docking. It blocked the binding domain of 14-3-3σ, hence promoting the release of the partner protein c-Abl (the one not involved in Bcr rearrangement), and its translocation to both the nuclear compartment and mitochondrial membranes to induce a pro-apoptotic response. Our results advance BV01 as a confirmed hit compound capable of eliciting apoptotic death of Bcr-Abl-expressing cells by interfering with 14-3-3σ/c-Abl protein-protein interaction.

Citing Articles

Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases.

Zhou R, Hu W, Ma P, Liu C Bone Res. 2024; 12(1):58.

PMID: 39406741 PMC: 11480210. DOI: 10.1038/s41413-024-00370-4.


A pan-respiratory antiviral chemotype targeting a transient host multi-protein complex.

Michon M, Muller-Schiffmann A, Lingappa A, Yu S, Du L, Deiter F Open Biol. 2024; 14(6):230363.

PMID: 38889796 PMC: 11285769. DOI: 10.1098/rsob.230363.


The Development of CDC25A-Derived Phosphoseryl Peptides That Bind 14-3-3ε with High Affinities.

Kamayirese S, Maity S, Hansen L, Lovas S Int J Mol Sci. 2024; 25(9).

PMID: 38732131 PMC: 11084659. DOI: 10.3390/ijms25094918.


Usnic Acid Targets 14-3-3 Proteins and Suppresses Cancer Progression by Blocking Substrate Interaction.

Varli M, Bhosle S, Kim E, Yang Y, Tas I, Zhou R JACS Au. 2024; 4(4):1521-1537.

PMID: 38665668 PMC: 11040559. DOI: 10.1021/jacsau.3c00774.


Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome.

Qu J, Tarasov K, Chakir K, Tarasova Y, Riordon D, Lakatta E Cells. 2022; 11(21).

PMID: 36359893 PMC: 9654263. DOI: 10.3390/cells11213496.