Alexander K, Ikonomidis J, Akerman A
J Clin Med. 2024; 13(3).
PMID: 38337512
PMC: 10856211.
DOI: 10.3390/jcm13030818.
Guan X, Xin H, Xu M, Ji J, Li J
Comput Math Methods Med. 2022; 2022:3200798.
PMID: 35035519
PMC: 8758316.
DOI: 10.1155/2022/3200798.
Carney S, Broekelmann T, Mecham R, Ramamurthi A
Tissue Eng Part A. 2021; 28(5-6):239-253.
PMID: 34409851
PMC: 8972024.
DOI: 10.1089/ten.TEA.2020.0221.
Qi X, Wang F, Chun C, Saldarriaga L, Jiang Z, Pruitt E
Physiol Rep. 2020; 8(22):e14631.
PMID: 33242364
PMC: 7690909.
DOI: 10.14814/phy2.14631.
Harky A, Fan K, Fan K
Vasc Biol. 2020; 1(1):R13-R25.
PMID: 32923967
PMC: 7439919.
DOI: 10.1530/VB-19-0027.
Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm.
Liu B, Granville D, Golledge J, Kassiri Z
Am J Physiol Heart Circ Physiol. 2020; 318(3):H652-H670.
PMID: 32083977
PMC: 7099451.
DOI: 10.1152/ajpheart.00621.2019.
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection.
Maguire E, Pearce S, Xiao R, Oo A, Xiao Q
Pharmaceuticals (Basel). 2019; 12(3).
PMID: 31390798
PMC: 6789891.
DOI: 10.3390/ph12030118.
Mapping Semaphorins and Netrins in the Pathogenesis of Human Thoracic Aortic Aneurysms.
Alebrahim D, Nayak M, Ward A, Ursomanno P, Shams R, Corsica A
Int J Mol Sci. 2019; 20(9).
PMID: 31035427
PMC: 6539328.
DOI: 10.3390/ijms20092100.
TLR4 and MMP2 polymorphisms and their associations with cardiovascular risk factors in susceptibility to aortic aneurysmal diseases.
Li T, Jing J, Sun L, Jiang B, Xin S, Yang J
Biosci Rep. 2018; 39(1).
PMID: 30530865
PMC: 6328888.
DOI: 10.1042/BSR20181591.
Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms.
Malashicheva A, Kostina D, Kostina A, Irtyuga O, Voronkina I, Smagina L
Int J Vasc Med. 2016; 2016:3107879.
PMID: 26904289
PMC: 4745582.
DOI: 10.1155/2016/3107879.
Activation of Endocannabinoid System Is Associated with Persistent Inflammation in Human Aortic Aneurysm.
Gestrich C, Duerr G, Heinemann J, Meertz A, Probst C, Roell W
Biomed Res Int. 2015; 2015:456582.
PMID: 26539497
PMC: 4619808.
DOI: 10.1155/2015/456582.
Cathepsins: a new culprit behind abdominal aortic aneurysm.
Wang Y, Tang C, Qin Y
Regen Med Res. 2015; 1(1):5.
PMID: 25984324
PMC: 4431531.
DOI: 10.1186/2050-490X-1-5.
MicroRNA-21 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting activator protein-1.
Li Y, Yan L, Zhang W, Hu N, Chen W, Wang H
Am J Transl Res. 2014; 6(5):507-16.
PMID: 25360215
PMC: 4212925.
Inhibition of interleukin-1β decreases aneurysm formation and progression in a novel model of thoracic aortic aneurysms.
Johnston W, Salmon M, Pope N, Meher A, Su G, Stone M
Circulation. 2014; 130(11 Suppl 1):S51-9.
PMID: 25200056
PMC: 5097450.
DOI: 10.1161/CIRCULATIONAHA.113.006800.
Preliminary biomarkers for identification of human ascending thoracic aortic aneurysm.
Black K, Masuzawa A, Hagberg R, Khabbaz K, Trovato M, Rettagliati V
J Am Heart Assoc. 2013; 2(6):e000138.
PMID: 24231657
PMC: 3886733.
DOI: 10.1161/JAHA.113.000138.
Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms.
Wilson J, Baek S, Humphrey J
Proc Math Phys Eng Sci. 2013; 469(2150):20120556.
PMID: 23633905
PMC: 3637002.
DOI: 10.1098/rspa.2012.0556.
Possible mechanical roles of glycosaminoglycans in thoracic aortic dissection and associations with dysregulated transforming growth factor-β.
Humphrey J
J Vasc Res. 2012; 50(1):1-10.
PMID: 23018968
PMC: 3607504.
DOI: 10.1159/000342436.