» Articles » PMID: 21956170

Workflow and Metrics for Image Quality Control in Large-scale High-content Screens

Overview
Journal J Biomol Screen
Publisher Sage Publications
Date 2011 Sep 30
PMID 21956170
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

Automated microscopes have enabled the unprecedented collection of images at a rate that precludes visual inspection. Automated image analysis is required to identify interesting samples and extract quantitative information for high-content screening (HCS). However, researchers are impeded by the lack of metrics and software tools to identify image-based aberrations that pollute data, limiting experiment quality. The authors have developed and validated approaches to identify those image acquisition artifacts that prevent optimal extraction of knowledge from high-content microscopy experiments. They have implemented these as a versatile, open-source toolbox of algorithms and metrics readily usable by biologists to improve data quality in a wide variety of biological experiments.

Citing Articles

SPACe: an open-source, single-cell analysis of Cell Painting data.

Stossi F, Singh P, Marini M, Safari K, Szafran A, Rivera Tostado A Nat Commun. 2024; 15(1):10170.

PMID: 39580445 PMC: 11585637. DOI: 10.1038/s41467-024-54264-4.


Multiplexed, image-based pooled screens in primary cells and tissues with PerturbView.

Kudo T, Meireles A, Moncada R, Chen Y, Wu P, Gould J Nat Biotechnol. 2024; .

PMID: 39375449 DOI: 10.1038/s41587-024-02391-0.


A perspective on FAIR quality control in multiplexed imaging data processing.

Vierdag W, Saka S Front Bioinform. 2024; 4:1336257.

PMID: 38405548 PMC: 10885342. DOI: 10.3389/fbinf.2024.1336257.


A deep learning dataset for sample preparation artefacts detection in multispectral high-content microscopy.

Sharma V, Yakimovich A Sci Data. 2024; 11(1):232.

PMID: 38395957 PMC: 10891121. DOI: 10.1038/s41597-024-03064-y.


Evaluating the utility of brightfield image data for mechanism of action prediction.

Harrison P, Gupta A, Rietdijk J, Wieslander H, Carreras-Puigvert J, Georgiev P PLoS Comput Biol. 2023; 19(7):e1011323.

PMID: 37490493 PMC: 10403126. DOI: 10.1371/journal.pcbi.1011323.


References
1.
Misselwitz B, Strittmatter G, Periaswamy B, Schlumberger M, Rout S, Horvath P . Enhanced CellClassifier: a multi-class classification tool for microscopy images. BMC Bioinformatics. 2010; 11:30. PMC: 2821321. DOI: 10.1186/1471-2105-11-30. View

2.
Wang X, Ghosh S, Guo S . Quantitative quality control in microarray image processing and data acquisition. Nucleic Acids Res. 2001; 29(15):E75-5. PMC: 55840. DOI: 10.1093/nar/29.15.e75. View

3.
Jones T, Carpenter A, Lamprecht M, Moffat J, Silver S, Grenier J . Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci U S A. 2009; 106(6):1826-31. PMC: 2634799. DOI: 10.1073/pnas.0808843106. View

4.
Lehmussola A, Selinummi J, Ruusuvuori P, Niemisto A, Yli-Harja O . Simulating fluorescent microscope images of cell populations. Conf Proc IEEE Eng Med Biol Soc. 2007; 2005:3153-6. DOI: 10.1109/IEMBS.2005.1617144. View

5.
Kamentsky L, Jones T, Fraser A, Bray M, Logan D, Madden K . Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 2011; 27(8):1179-80. PMC: 3072555. DOI: 10.1093/bioinformatics/btr095. View