» Articles » PMID: 21822284

Trimeric Structure and Flexibility of the L1ORF1 Protein in Human L1 Retrotransposition

Overview
Date 2011 Aug 9
PMID 21822284
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

The LINE-1 (L1) retrotransposon emerges as a major source of human interindividual genetic variation, with important implications for evolution and disease. L1 retrotransposition is poorly understood at the molecular level, and the mechanistic details and evolutionary origin of the L1-encoded L1ORF1 protein (L1ORF1p) are particularly obscure. Here three crystal structures of trimeric L1ORF1p and NMR solution structures of individual domains reveal a sophisticated and highly structured, yet remarkably flexible, RNA-packaging protein. It trimerizes via an N-terminal, ion-containing coiled coil that serves as scaffold for the flexible attachment of the central RRM and the C-terminal CTD domains. The structures explain the specificity for single-stranded RNA substrates, and a mutational analysis indicates that the precise control of domain flexibility is critical for retrotransposition. Although the evolutionary origin of L1ORF1p remains unclear, our data reveal previously undetected structural and functional parallels to viral proteins.

Citing Articles

Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs.

Law C, Burns K bioRxiv. 2025; .

PMID: 39975348 PMC: 11838501. DOI: 10.1101/2025.02.02.635956.


Diverse single-stranded nucleic acid binding proteins enable both stable protection and rapid exchange required for biological function.

Morse M, Cashen B, Rouzina I, Williams M QRB Discov. 2025; 6:e1.

PMID: 39944884 PMC: 11811875. DOI: 10.1017/qrd.2024.21.


Targeted detection of endogenous LINE-1 proteins and ORF2p interactions.

Nielsen M, Wolters J, Bringas O, Jiang H, Di Stefano L, Oghbaie M Mob DNA. 2025; 16(1):3.

PMID: 39915890 PMC: 11800616. DOI: 10.1186/s13100-024-00339-4.


CRISPR-Enabled Autonomous Transposable Element (CREATE) for RNA-based gene editing and delivery.

Wang Y, Lin R, Harris M, Lavayen B, Diwanji N, McCreedy B EMBO Rep. 2025; 26(4):1062-1083.

PMID: 39789389 PMC: 11850887. DOI: 10.1038/s44319-024-00364-7.


Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon.

Mendez-Dorantes C, Zeng X, Karlow J, Schofield P, Turner S, Kalinowski J bioRxiv. 2025; .

PMID: 39764018 PMC: 11702581. DOI: 10.1101/2024.12.14.628481.


References
1.
Han J, Boeke J . LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression?. Bioessays. 2005; 27(8):775-84. DOI: 10.1002/bies.20257. View

2.
Chou K . Prediction of tight turns and their types in proteins. Anal Biochem. 2000; 286(1):1-16. DOI: 10.1006/abio.2000.4757. View

3.
Beck C, Collier P, Macfarlane C, Malig M, Kidd J, Eichler E . LINE-1 retrotransposition activity in human genomes. Cell. 2010; 141(7):1159-70. PMC: 3013285. DOI: 10.1016/j.cell.2010.05.021. View

4.
Tawar R, Duquerroy S, Vonrhein C, Varela P, Damier-Piolle L, Castagne N . Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science. 2009; 326(5957):1279-83. DOI: 10.1126/science.1177634. View

5.
Raymond D, Piper M, Gerrard S, Smith J . Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci U S A. 2010; 107(26):11769-74. PMC: 2900692. DOI: 10.1073/pnas.1001760107. View