» Articles » PMID: 20488934

High-throughput Sequencing Reveals Extensive Variation in Human-specific L1 Content in Individual Human Genomes

Overview
Journal Genome Res
Specialty Genetics
Date 2010 May 22
PMID 20488934
Citations 183
Authors
Affiliations
Soon will be listed here.
Abstract

Using high-throughput sequencing, we devised a technique to determine the insertion sites of virtually all members of the human-specific L1 retrotransposon family in any human genome. Using diagnostic nucleotides, we were able to locate the approximately 800 L1Hs copies corresponding specifically to the pre-Ta, Ta-0, and Ta-1 L1Hs subfamilies, with over 90% of sequenced reads corresponding to human-specific elements. We find that any two individual genomes differ at an average of 285 sites with respect to L1 insertion presence or absence. In total, we assayed 25 individuals, 15 of which are unrelated, at 1139 sites, including 772 shared with the reference genome and 367 nonreference L1 insertions. We show that L1Hs profiles recapitulate genetic ancestry, and determine the chromosomal distribution of these elements. Using these data, we estimate that the rate of L1 retrotransposition in humans is between 1/95 and 1/270 births, and the number of dimorphic L1 elements in the human population with gene frequencies greater than 0.05 is between 3000 and 10,000.

Citing Articles

Detecting transposable elements in long-read genomes using sTELLeR.

Saether K, Eisfeldt J Bioinformatics. 2024; 40(11).

PMID: 39558574 PMC: 11601167. DOI: 10.1093/bioinformatics/btae686.


Mapping of long interspersed element-1 (L1) insertions by TIPseq provides information about sub chromosomal genetic variation in human embryos.

Kohlrausch F, Wang F, McKerrow W, Grivainis M, Fenyo D, Keefe D J Assist Reprod Genet. 2024; 41(9):2257-2269.

PMID: 38951360 PMC: 11405744. DOI: 10.1007/s10815-024-03176-9.


Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites.

Lanciano S, Philippe C, Sarkar A, Pratella D, Domrane C, Doucet A Cell Genom. 2024; 4(2):100498.

PMID: 38309261 PMC: 10879037. DOI: 10.1016/j.xgen.2024.100498.


LINE-1 mRNA 3' end dynamics shape its biology and retrotransposition potential.

Janecki D, Sen R, Szostak N, Kajdasz A, Kordys M, Plawgo K Nucleic Acids Res. 2024; 52(6):3327-3345.

PMID: 38197223 PMC: 11014359. DOI: 10.1093/nar/gkad1251.


Evolutionary insights from profiling LINE-1 activity at allelic resolution in a single human genome.

Yang L, Metzger G, Padilla Del Valle R, Delgadillo Rubalcaba D, McLaughlin Jr R EMBO J. 2024; 43(1):112-131.

PMID: 38177314 PMC: 10883270. DOI: 10.1038/s44318-023-00007-y.


References
1.
Moran J, Holmes S, Naas T, DeBerardinis R, Boeke J, Kazazian Jr H . High frequency retrotransposition in cultured mammalian cells. Cell. 1996; 87(5):917-27. DOI: 10.1016/s0092-8674(00)81998-4. View

2.
Langmead B, Trapnell C, Pop M, Salzberg S . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. PMC: 2690996. DOI: 10.1186/gb-2009-10-3-r25. View

3.
Myers J, Vincent B, Udall H, Watkins W, Morrish T, Kilroy G . A comprehensive analysis of recently integrated human Ta L1 elements. Am J Hum Genet. 2002; 71(2):312-26. PMC: 379164. DOI: 10.1086/341718. View

4.
Witherspoon D, Marchani E, Watkins W, Ostler C, Wooding S, Anders B . Human population genetic structure and diversity inferred from polymorphic L1(LINE-1) and Alu insertions. Hum Hered. 2006; 62(1):30-46. DOI: 10.1159/000095851. View

5.
Wang H, Xing J, Grover D, Hedges D, Han K, Walker J . SVA elements: a hominid-specific retroposon family. J Mol Biol. 2005; 354(4):994-1007. DOI: 10.1016/j.jmb.2005.09.085. View