» Articles » PMID: 21803789

Measuring Cell Identity in Noisy Biological Systems

Overview
Specialty Biochemistry
Date 2011 Aug 2
PMID 21803789
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty measure dSpec, which measures the effect of noise on specificity. Using global gene expression data from the mouse brain, plant root and human white blood cells, we show that Spec identifies genes with variable expression levels that are nonetheless highly specific of particular cell types. When samples from different individuals are used, dSpec measures genes' transcriptional plasticity in each cell type. Our approach is broadly applicable to mapped gene expression measurements in stem cell biology, developmental biology, cancer biology and biomarker identification. As an example of such applications, we show that Spec identifies a new class of biomarkers, which exhibit variable expression without compromising specificity. The approach provides a unifying theoretical framework for quantifying specificity in the presence of noise, which is widely applicable across diverse biological systems.

Citing Articles

Cortical arealization of interneurons defines shared and distinct molecular programs in developing human and macaque brains.

Feng X, Gao Y, Chu F, Shan Y, Liu M, Wang Y Nat Commun. 2025; 16(1):672.

PMID: 39809789 PMC: 11733295. DOI: 10.1038/s41467-025-56058-8.


Dynamics of alternative polyadenylation in single root cells of .

Bi X, Zhu S, Liu F, Wu X Front Plant Sci. 2024; 15:1437118.

PMID: 39372861 PMC: 11449893. DOI: 10.3389/fpls.2024.1437118.


A common regulatory switch controls a suite of C4 traits in multiple cell types.

Camo-Escobar D, Alcala-Gutierrez C, Palafox-Figueroa E, Guillotin B, Hernandez-Coronado M, Coyac-Rodriguez J bioRxiv. 2024; .

PMID: 38260543 PMC: 10802423. DOI: 10.1101/2023.12.21.572850.


Spatiotemporal expression patterns of anxiety disorder-associated genes.

Karunakaran K, Amemori K Transl Psychiatry. 2023; 13(1):385.

PMID: 38092764 PMC: 10719387. DOI: 10.1038/s41398-023-02693-y.


A Wox3-patterning module organizes planar growth in grass leaves and ligules.

Satterlee J, Evans L, Conlon B, Conklin P, Martinez-Gomez J, Yen J Nat Plants. 2023; 9(5):720-732.

PMID: 37142751 PMC: 10200708. DOI: 10.1038/s41477-023-01405-0.


References
1.
Katari M, Nowicki S, Aceituno F, Nero D, Kelfer J, Thompson L . VirtualPlant: a software platform to support systems biology research. Plant Physiol. 2009; 152(2):500-15. PMC: 2815851. DOI: 10.1104/pp.109.147025. View

2.
Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y . Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science. 2010; 329(5995):1065-7. DOI: 10.1126/science.1191132. View

3.
Nawy T, Lee J, Colinas J, Wang J, Thongrod S, Malamy J . Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell. 2005; 17(7):1908-25. PMC: 1167541. DOI: 10.1105/tpc.105.031724. View

4.
Brady S, Orlando D, Lee J, Wang J, Koch J, Dinneny J . A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007; 318(5851):801-6. DOI: 10.1126/science.1146265. View

5.
Shen-Orr S, Tibshirani R, Khatri P, Bodian D, Staedtler F, Perry N . Cell type-specific gene expression differences in complex tissues. Nat Methods. 2010; 7(4):287-9. PMC: 3699332. DOI: 10.1038/nmeth.1439. View