» Articles » PMID: 21766027

Glial Cells in Amyotrophic Lateral Sclerosis

Overview
Journal Neurol Res Int
Publisher Wiley
Specialty Neurology
Date 2011 Jul 19
PMID 21766027
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

Amyotrophic lateral sclerosis (ALS) is an adult motor neuron disease characterized by premature death of upper and lower motor neurons. Two percent of ALS cases are caused by the dominant mutations in the gene for superoxide dismutase 1 (SOD1) through a gain of toxic property of mutant protein. Genetic and chimeric mice studies using SOD1 models indicate that non-neuronal cells play important roles in neurodegeneration through non-cell autonomous mechanism. We review the contribution of each glial cell type in ALS pathology from studies of the rodent models and ALS patients. Astrogliosis and microgliosis are not only considerable hallmarks of the disease, but the intensity of microglial activation is correlated with severity of motor neuron damage in human ALS. The impaired astrocytic functions such as clearance of extracellular glutamate and release of neurotrophic factors are implicated in disease. Further, the damage within astrocytes and microglia is involved in accelerated disease progression. Finally, other glial cells such as NG2 cells, oligodendrocytes and Schwann cells are under the investigation to determine their contribution in ALS. Accumulating knowledge of active role of glial cells in the disease should be carefully applied to understanding of the sporadic ALS and development of therapy targeted for glial cells.

Citing Articles

A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research.

Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R Front Cell Neurosci. 2024; 18:1435619.

PMID: 39280794 PMC: 11393746. DOI: 10.3389/fncel.2024.1435619.


Treating amyotrophic lateral sclerosis with allogeneic Schwann cell-derived exosomal vesicles: a case report.

Goldschmidt-Clermont P, Khan A, Jimsheleishvili G, Graham P, Brooks A, Silvera R Neural Regen Res. 2024; 20(4):1207-1216.

PMID: 38922880 PMC: 11438342. DOI: 10.4103/NRR.NRR-D-23-01815.


Novel insights into RAGE signaling pathways during the progression of amyotrophic lateral sclerosis in RAGE-deficient SOD1 G93A mice.

Nowicka N, Zglejc-Waszak K, Juranek J, Korytko A, Wasowicz K, Chmielewska-Krzesinska M PLoS One. 2024; 19(3):e0299567.

PMID: 38457412 PMC: 10923448. DOI: 10.1371/journal.pone.0299567.


Nicotinamide riboside, pterostilbene and ibudilast protect motor neurons and extend survival in ALS mice.

Lopez-Blanch R, Salvador-Palmer R, Oriol-Caballo M, Moreno-Murciano P, Dellinger R, Estrela J Neurotherapeutics. 2024; 21(1):e00301.

PMID: 38241160 PMC: 10903100. DOI: 10.1016/j.neurot.2023.10.011.


Targeting mitochondrial Ca uptake for the treatment of amyotrophic lateral sclerosis.

Zhong R, Rua M, Wei-LaPierre L J Physiol. 2023; 602(8):1519-1549.

PMID: 38010626 PMC: 11032238. DOI: 10.1113/JP284143.


References
1.
Banerjee R, Mosley R, Reynolds A, Dhar A, Jackson-Lewis V, Gordon P . Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One. 2008; 3(7):e2740. PMC: 2481277. DOI: 10.1371/journal.pone.0002740. View

2.
Hirsch E, Hunot S . Neuroinflammation in Parkinson's disease: a target for neuroprotection?. Lancet Neurol. 2009; 8(4):382-97. DOI: 10.1016/S1474-4422(09)70062-6. View

3.
Bruijn L, Miller T, Cleveland D . Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 2004; 27:723-49. DOI: 10.1146/annurev.neuro.27.070203.144244. View

4.
Wang L, Gutmann D, Roos R . Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet. 2010; 20(2):286-93. DOI: 10.1093/hmg/ddq463. View

5.
Pasinelli P, Brown R . Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006; 7(9):710-23. DOI: 10.1038/nrn1971. View