» Articles » PMID: 21632708

Membrane-bound IL-22 After De Novo Production in Tuberculosis and Anti-Mycobacterium Tuberculosis Effector Function of IL-22+ CD4+ T Cells

Overview
Journal J Immunol
Date 2011 Jun 3
PMID 21632708
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

The role of IL-22-producing CD4(+) T cells in intracellular pathogen infections is poorly characterized. IL-22-producing CD4(+) T cells may express some effector molecules on the membrane, and therefore synergize or contribute to antimicrobial effector function. This hypothesis cannot be tested by conventional approaches manipulating a single IL-22 cytokine at genetic and protein levels, and IL-22(+) T cells cannot be purified for evaluation due to secretion nature of cytokines. In this study, we surprisingly found that upon activation, CD4(+) T cells in Mycobacterium tuberculosis-infected macaques or humans could evolve into T effector cells bearing membrane-bound IL-22 after de novo IL-22 production. Membrane-bound IL-22(+) CD4(+) T effector cells appeared to mature in vivo and sustain membrane distribution in highly inflammatory environments during active M. tuberculosis infection. Near-field scanning optical microscopy/quantum dot-based nanoscale molecular imaging revealed that membrane-bound IL-22, like CD3, distributed in membrane and engaged as ∼100-200 nm nanoclusters or ∼300-600 nm nanodomains for potential interaction with IL-22R. Importantly, purified membrane-bound IL-22(+) CD4(+) T cells inhibited intracellular M. tuberculosis replication in macrophages. Our findings suggest that IL-22-producing T cells can evolve to retain IL-22 on membrane for prolonged IL-22 t(1/2) and to exert efficient cell-cell interaction for anti-M. tuberculosis effector function.

Citing Articles

The evolving landscape of IL-10, IL-22 and IL-26 in pleurisy especially in tuberculous pleurisy.

Niu Q, Wang M, Liu X Respir Res. 2024; 25(1):275.

PMID: 39003443 PMC: 11245850. DOI: 10.1186/s12931-024-02896-x.


Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases.

Zhang K, Chen L, Zhu C, Zhang M, Liang C Pathogens. 2023; 12(2).

PMID: 36839448 PMC: 9965464. DOI: 10.3390/pathogens12020176.


Superinfection with SARS-CoV-2 Has Deleterious Effects on Mycobacterium bovis BCG Immunity and Promotes Dissemination of Mycobacterium tuberculosis.

Hildebrand R, Chandrasekar S, Riel M, Touray B, Aschenbroich S, Talaat A Microbiol Spectr. 2022; 10(5):e0307522.

PMID: 36200898 PMC: 9603897. DOI: 10.1128/spectrum.03075-22.


Cytokine Receptors-Regulators of Antimycobacterial Immune Response.

Druszczynska M, Godkowicz M, Kulesza J, Wawrocki S, Fol M Int J Mol Sci. 2022; 23(3).

PMID: 35163035 PMC: 8835057. DOI: 10.3390/ijms23031112.


Th22 Cells Are a Major Contributor to the Mycobacterial CD4 T Cell Response and Are Depleted During HIV Infection.

Bunjun R, Omondi F, Makatsa M, Keeton R, Wendoh J, Muller T J Immunol. 2021; 207(5):1239-1249.

PMID: 34389623 PMC: 8387408. DOI: 10.4049/jimmunol.1900984.


References
1.
Ma H, Liang S, Li J, Napierata L, Brown T, Benoit S . IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest. 2008; 118(2):597-607. PMC: 2200300. DOI: 10.1172/JCI33263. View

2.
Zheng Y, Valdez P, Danilenko D, Hu Y, Sa S, Gong Q . Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008; 14(3):282-9. DOI: 10.1038/nm1720. View

3.
Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan A . IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008; 118(2):534-44. PMC: 2157567. DOI: 10.1172/JCI33194. View

4.
Qiu L, Huang D, Chen C, Wang R, Shen L, Shen Y . Severe tuberculosis induces unbalanced up-regulation of gene networks and overexpression of IL-22, MIP-1alpha, CCL27, IP-10, CCR4, CCR5, CXCR3, PD1, PDL2, IL-3, IFN-beta, TIM1, and TLR2 but low antigen-specific cellular responses. J Infect Dis. 2008; 198(10):1514-9. PMC: 2884371. DOI: 10.1086/592448. View

5.
Chen Y, Qin J, Cai J, Chen Z . Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. PLoS One. 2009; 4(4):e5386. PMC: 2671402. DOI: 10.1371/journal.pone.0005386. View