» Articles » PMID: 21551031

The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants

Overview
Journal Science
Specialty Science
Date 2011 May 10
PMID 21551031
Citations 366
Authors
Affiliations
Soon will be listed here.
Abstract

Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.

Citing Articles

Comparative analysis using a chromosome-scale genome assembly for Funaria hygrometrica suggests greater collinearity in mosses than in seed plants.

Kirbis A, Rahmatpour N, Dong S, Yu J, Waser L, Huang H Commun Biol. 2025; 8(1):330.

PMID: 40021761 PMC: 11871058. DOI: 10.1038/s42003-025-07749-x.


Time-resolved oxidative signal convergence across the algae-embryophyte divide.

Rieseberg T, Dadras A, Darienko T, Post S, Herrfurth C, Furst-Jansen J Nat Commun. 2025; 16(1):1780.

PMID: 39971942 PMC: 11840003. DOI: 10.1038/s41467-025-56939-y.


Characterization and functional analysis of type III polyketide synthases in Selaginella moellendorffii.

Liu X, Gao S, Cheng A, Lou H Planta. 2025; 261(2):28.

PMID: 39786623 DOI: 10.1007/s00425-024-04602-z.


Gene family rearrangements and transcriptional priming drive the evolution of vegetative desiccation tolerance in Selaginella.

Alejo-Jacuinde G, Chavez Montes R, Gutierrez Reyes C, Yong-Villalobos L, Simpson J, Herrera-Estrella L Plant J. 2024; 121(1):e17169.

PMID: 39666518 PMC: 11711927. DOI: 10.1111/tpj.17169.


First records of and from Senegal (Selaginellaceae).

Mingou P, Gueye M, Bayet T, Cambier C Biodivers Data J. 2024; 12:e134350.

PMID: 39664498 PMC: 11632351. DOI: 10.3897/BDJ.12.e134350.


References
1.
Xie Z, Allen E, Wilken A, Carrington J . DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2005; 102(36):12984-9. PMC: 1200315. DOI: 10.1073/pnas.0506426102. View

2.
Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M . The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell. 2007; 19(10):3058-79. PMC: 2174699. DOI: 10.1105/tpc.107.051524. View

3.
Barker M, Vogel H, Schranz M . Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol. 2010; 1:391-9. PMC: 2817432. DOI: 10.1093/gbe/evp040. View

4.
Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A . The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. J Plant Res. 2007; 120(2):281-90. DOI: 10.1007/s10265-006-0055-y. View

5.
Cho S, Addo-Quaye C, Coruh C, Arif M, Ma Z, Frank W . Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet. 2008; 4(12):e1000314. PMC: 2600652. DOI: 10.1371/journal.pgen.1000314. View