» Articles » PMID: 21527916

Generation of Chemically Engineered Ribosomes for Atomic Mutagenesis Studies on Protein Biosynthesis

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2011 Apr 30
PMID 21527916
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

The protocol describes the site-specific chemical modification of 23S rRNA of Thermus aquaticus ribosomes. The centerpiece of this 'atomic mutagenesis' approach is the site-specific incorporation of non-natural nucleoside analogs into 23S rRNA in the context of the entire 70S ribosome. This technique exhaustively makes use of the available crystallographic structures of the ribosome for designing detailed biochemical experiments aiming at unraveling molecular insights of ribosomal functions. The generation of chemically engineered ribosomes carrying a particular non-natural 23S rRNA residue at the site of interest, a procedure that typically takes less than 2 d, allows the study of translation at the molecular level and goes far beyond the limits of standard mutagenesis approaches. This methodology, in combination with the presented tests for ribosomal functions adapted to chemically engineered ribosomes, allows unprecedented molecular insight into the mechanisms of protein biosynthesis.

Citing Articles

The stationary phase-specific sRNA FimR2 is a multifunctional regulator of bacterial motility, biofilm formation and virulence.

Raad N, Tandon D, Hapfelmeier S, Polacek N Nucleic Acids Res. 2022; 50(20):11858-11875.

PMID: 36354005 PMC: 9723502. DOI: 10.1093/nar/gkac1025.


Dynamic 23S rRNA modification ho5C2501 benefits Escherichia coli under oxidative stress.

Fasnacht M, Gallo S, Sharma P, Himmelstoss M, Limbach P, Willi J Nucleic Acids Res. 2021; 50(1):473-489.

PMID: 34904663 PMC: 8754641. DOI: 10.1093/nar/gkab1224.


Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology.

Fasnacht M, Polacek N Front Mol Biosci. 2021; 8:671037.

PMID: 34041267 PMC: 8141631. DOI: 10.3389/fmolb.2021.671037.


Impact of 3-deazapurine nucleobases on RNA properties.

Bereiter R, Himmelstoss M, Renard E, Mairhofer E, Egger M, Breuker K Nucleic Acids Res. 2021; 49(8):4281-4293.

PMID: 33856457 PMC: 8096147. DOI: 10.1093/nar/gkab256.


tRNA 3' shortening by LCCR4 as a response to stress in Trypanosoma brucei.

Cristodero M, Brogli R, Joss O, Schimanski B, Schneider A, Polacek N Nucleic Acids Res. 2021; 49(3):1647-1661.

PMID: 33406257 PMC: 7897491. DOI: 10.1093/nar/gkaa1261.


References
1.
Clementi N, Polacek N . Ribosome-associated GTPases: the role of RNA for GTPase activation. RNA Biol. 2010; 7(5):521-7. DOI: 10.4161/rna.7.5.12467. View

2.
Erlacher M, Polacek N . Ribosomal catalysis: the evolution of mechanistic concepts for peptide bond formation and peptidyl-tRNA hydrolysis. RNA Biol. 2008; 5(1):5-12. DOI: 10.4161/rna.5.1.5922. View

3.
Gruber T, Kohrer C, Lung B, Shcherbakov D, Piendl W . Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms. FEBS Lett. 2003; 549(1-3):123-8. DOI: 10.1016/s0014-5793(03)00760-9. View

4.
Zavialov A, Mora L, Buckingham R, Ehrenberg M . Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol Cell. 2002; 10(4):789-98. DOI: 10.1016/s1097-2765(02)00691-3. View

5.
Lawyer F, Stoffel S, Saiki R, Myambo K, Drummond R, Gelfand D . Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989; 264(11):6427-37. View