» Articles » PMID: 34041267

Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology

Overview
Specialty Biology
Date 2021 May 27
PMID 34041267
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

Ever since the "great oxidation event," Earth's cellular life forms had to cope with the danger of reactive oxygen species (ROS) affecting the integrity of biomolecules and hampering cellular metabolism circuits. Consequently, increasing ROS levels in the biosphere represented growing stress levels and thus shaped the evolution of species. Whether the ROS were produced endogenously or exogenously, different systems evolved to remove the ROS and repair the damage they inflicted. If ROS outweigh the cell's capacity to remove the threat, we speak of oxidative stress. The injuries through oxidative stress in cells are diverse. This article reviews the damage oxidative stress imposes on the different steps of the central dogma of molecular biology in bacteria, focusing in particular on the RNA machines involved in transcription and translation.

Citing Articles

First whole genome report of PSU-3885-11 isolated from a patient in Thailand.

Chaichana N, Yaikhan T, Yingkajorn M, Thepsimanon N, Suwannasin S, Singkhamanan K Curr Res Microb Sci. 2025; 8:100350.

PMID: 39911356 PMC: 11795813. DOI: 10.1016/j.crmicr.2025.100350.


subsp. Strain TE5: A Promising Biological Control Bacterium Against the Causal Agent of Spot Blotch in Wheat.

Campos-Avelar I, Garcia Jaime M, Morales Sandoval P, Parra-Cota F, de Los Santos Villalobos S Plants (Basel). 2025; 14(2).

PMID: 39861562 PMC: 11769180. DOI: 10.3390/plants14020209.


Production, Isolation, and Characterization of Stable Isotope-Labeled Standards for Mass Spectrometric Measurements of Oxidatively-Damaged Nucleosides in RNA.

Jaruga P, Kant M, Dizdaroglu M ACS Omega. 2025; 10(1):1519-1530.

PMID: 39829548 PMC: 11740632. DOI: 10.1021/acsomega.4c09310.


Gene Variant Related Neurological and Molecular Biomarkers Predict Psychosis Progression, with Potential for Monitoring and Prevention.

Fryar-Williams S, Tucker G, Clements P, Strobel J Int J Mol Sci. 2025; 25(24.

PMID: 39769114 PMC: 11677369. DOI: 10.3390/ijms252413348.


Dual role of phage terminase in oxidative stress response.

Zhang S, Ma S, Wang F, Hu C Eng Microbiol. 2024; 4(3):100156.

PMID: 39629107 PMC: 11610961. DOI: 10.1016/j.engmic.2024.100156.


References
1.
Kussmaul L, Hirst J . The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A. 2006; 103(20):7607-12. PMC: 1472492. DOI: 10.1073/pnas.0510977103. View

2.
Dumitrescu L, Popescu-Olaru I, Cozma L, Tulba D, Hinescu M, Ceafalan L . Oxidative Stress and the Microbiota-Gut-Brain Axis. Oxid Med Cell Longev. 2019; 2018:2406594. PMC: 6304899. DOI: 10.1155/2018/2406594. View

3.
Imlay J . A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol Chem. 1995; 270(34):19767-77. View

4.
Rinalducci S, Pedersen J, Zolla L . Generation of reactive oxygen species upon strong visible light irradiation of isolated phycobilisomes from Synechocystis PCC 6803. Biochim Biophys Acta. 2008; 1777(5):417-24. DOI: 10.1016/j.bbabio.2008.02.005. View

5.
Blanchard J, Wholey W, Conlon E, Pomposiello P . Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One. 2007; 2(11):e1186. PMC: 2064960. DOI: 10.1371/journal.pone.0001186. View