» Articles » PMID: 21441899

Lateral Density of Receptor Arrays in the Membrane Plane Influences Sensitivity of the E. Coli Chemotaxis Response

Overview
Journal EMBO J
Date 2011 Mar 29
PMID 21441899
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

In chemotactic bacteria, transmembrane chemoreceptors, CheA and CheW form the core signalling complex of the chemotaxis sensory apparatus. These complexes are organized in extended arrays in the cytoplasmic membrane that allow bacteria to respond to changes in concentration of extracellular ligands via a cooperative, allosteric response that leads to substantial amplification of the signal induced by ligand binding. Here, we have combined cryo-electron tomographic studies of the 3D spatial architecture of chemoreceptor arrays in intact E. coli cells with computational modelling to develop a predictive model for the cooperativity and sensitivity of the chemotaxis response. The predictions were tested experimentally using fluorescence resonance energy transfer (FRET) microscopy. Our results demonstrate that changes in lateral packing densities of the partially ordered, spatially extended chemoreceptor arrays can modulate the bacterial chemotaxis response, and that information about the molecular organization of the arrays derived by cryo-electron tomography of intact cells can be translated into testable, predictive computational models of the chemotaxis response.

Citing Articles

Time-reversal symmetry breaking in the chemosensory array reveals a general mechanism for dissipation-enhanced cooperative sensing.

Hathcock D, Yu Q, Tu Y Nat Commun. 2024; 15(1):8892.

PMID: 39406715 PMC: 11480488. DOI: 10.1038/s41467-024-52799-0.


do not count single molecules.

Mattingly H, Kamino K, Ong J, Kottou R, Emonet T, Machta B bioRxiv. 2024; .

PMID: 39026702 PMC: 11257612. DOI: 10.1101/2024.07.09.602750.


Regulation of the chemotaxis histidine kinase CheA: A structural perspective.

Muok A, Briegel A, Crane B Biochim Biophys Acta Biomembr. 2019; 1862(1):183030.

PMID: 31374212 PMC: 7212787. DOI: 10.1016/j.bbamem.2019.183030.


Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET.

Keegstra J, Kamino K, Anquez F, Lazova M, Emonet T, Shimizu T Elife. 2017; 6.

PMID: 29231170 PMC: 5809149. DOI: 10.7554/eLife.27455.


Information processing in bacteria: memory, computation, and statistical physics: a key issues review.

Lan G, Tu Y Rep Prog Phys. 2016; 79(5):052601.

PMID: 27058315 PMC: 4955840. DOI: 10.1088/0034-4885/79/5/052601.


References
1.
Sourjik V, Berg H . Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci U S A. 2001; 99(1):123-7. PMC: 117525. DOI: 10.1073/pnas.011589998. View

2.
Maddock J, Shapiro L . Polar location of the chemoreceptor complex in the Escherichia coli cell. Science. 1993; 259(5102):1717-23. DOI: 10.1126/science.8456299. View

3.
Sourjik V, Armitage J . Spatial organization in bacterial chemotaxis. EMBO J. 2010; 29(16):2724-33. PMC: 2924652. DOI: 10.1038/emboj.2010.178. View

4.
Neumann S, Hansen C, Wingreen N, Sourjik V . Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J. 2010; 29(20):3484-95. PMC: 2964171. DOI: 10.1038/emboj.2010.224. View

5.
Mello B, Tu Y . Quantitative modeling of sensitivity in bacterial chemotaxis: the role of coupling among different chemoreceptor species. Proc Natl Acad Sci U S A. 2003; 100(14):8223-8. PMC: 166210. DOI: 10.1073/pnas.1330839100. View