» Articles » PMID: 21425242

Enhancement of Imaging Depth in Turbid Media Using a Wide Area Detector

Overview
Journal J Biophotonics
Date 2011 Mar 23
PMID 21425242
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The depth of two-photon fluorescence imaging in turbid media can be significantly enhanced by the use of the here described fluorescence detection method that allows to efficiently collect scattered fluorescence photons from a wide area of the turbid sample. By using this detector we were able to perform imaging of turbid samples, simulating brain tissue, at depths up to 3 mm, where the two-photon induced fluorescence signal is too weak to be detected by means used in conventional two-photon microscopy.

Citing Articles

Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution.

Wang R, Hastings W, Saliba J, Bao D, Huang Y, Maity S ACS Nano. 2024; 19(1):73-100.

PMID: 39704725 PMC: 11752498. DOI: 10.1021/acsnano.4c11505.


Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis.

Vu T, Vallmitjana A, Gu J, La K, Xu Q, Flores J Nat Commun. 2022; 13(1):169.

PMID: 35013281 PMC: 8748653. DOI: 10.1038/s41467-021-27798-0.


Method of transmission filters to measure emission spectra in strongly scattering media.

Torrado B, Dvornikov A, Gratton E Biomed Opt Express. 2021; 12(7):3760-3774.

PMID: 34457378 PMC: 8367243. DOI: 10.1364/BOE.422236.


The DIVER Microscope for Imaging in Scattering Media.

Dvornikov A, Malacrida L, Gratton E Methods Protoc. 2019; 2(2).

PMID: 31234383 PMC: 6632175. DOI: 10.3390/mps2020053.


Hyperspectral imaging in highly scattering media by the spectral phasor approach using two filters.

Dvornikov A, Gratton E Biomed Opt Express. 2018; 9(8):3503-3511.

PMID: 30338135 PMC: 6191637. DOI: 10.1364/BOE.9.003503.


References
1.
Watson B, Nikolenko V, Yuste R . Two-photon imaging with diffractive optical elements. Front Neural Circuits. 2009; 3:6. PMC: 2715267. DOI: 10.3389/neuro.04.006.2009. View

2.
Le Harzic R, Riemann I, Weinigel M, Konig K, Messerschmidt B . Rigid and high-numerical-aperture two-photon fluorescence endoscope. Appl Opt. 2009; 48(18):3396-400. DOI: 10.1364/ao.48.003396. View

3.
Yaroslavsky A, Schulze P, Yaroslavsky I, SCHOBER R, Ulrich F, Schwarzmaier H . Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol. 2002; 47(12):2059-73. DOI: 10.1088/0031-9155/47/12/305. View

4.
Combs C, Smirnov A, Chess D, McGavern D, Schroeder J, Riley J . Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED). J Microsc. 2010; 241(2):153-61. PMC: 3518454. DOI: 10.1111/j.1365-2818.2010.03411.x. View

5.
Engelbrecht C, Gobel W, Helmchen F . Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection. Opt Express. 2009; 17(8):6421-35. DOI: 10.1364/oe.17.006421. View