» Articles » PMID: 21228171

Long-term in Vivo Imaging of β-amyloid Plaque Appearance and Growth in a Mouse Model of Cerebral β-amyloidosis

Overview
Journal J Neurosci
Specialty Neurology
Date 2011 Jan 14
PMID 21228171
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular deposition of the amyloid-β peptide (Aβ) in the brain parenchyma is a hallmark lesion of Alzheimer's disease (AD) and a predictive marker for the progression of preclinical to symptomatic AD. Here, we used multiphoton in vivo imaging to study Aβ plaque formation in the brains of 3- to 4-month-old APPPS1 transgenic mice over a period of 6 months. A novel head fixation system provided robust and efficient long-term tracking of single plaques over time. Results revealed an estimated rate of 35 newly formed plaques per cubic millimeter of neocortical volume per week at 4-5 months of age. At later time points (i.e., in the presence of increasing cerebral β-amyloidosis), the number of newly formed plaques decreased. On average, both newly formed and existing plaques grew at a similar growth rate of 0.3 μm (radius) per week. A solid knowledge of the dynamics of cerebral β-amyloidosis in mouse models provides a powerful tool to monitor preclinical Aβ targeting therapeutic strategies and eases the interpretation of diagnostic amyloid imaging in humans.

Citing Articles

Brain pericytes and perivascular fibroblasts are stromal progenitors with dual functions in cerebrovascular regeneration after stroke.

Bernier L, Hefendehl J, Scott R, Tung L, Lewis C, Soliman H Nat Neurosci. 2025; 28(3):517-535.

PMID: 39962273 DOI: 10.1038/s41593-025-01872-y.


Photoacoustic and fluorescence dual-modality imaging of cerebral biomarkers in Alzheimer's disease rodent model.

Zhai T, Zhang W, Ma C, Ma Y, Paulus Y, Su E J Biomed Opt. 2024; 29(12):126002.

PMID: 39717714 PMC: 11665203. DOI: 10.1117/1.JBO.29.12.126002.


Helicobacter pylori outer membrane vesicles directly promote Aβ aggregation and enhance Aβ toxicity in APP/PS1 mice.

Meng D, Lai Y, Zhang L, Hu W, Wei H, Guo C Commun Biol. 2024; 7(1):1474.

PMID: 39516239 PMC: 11549467. DOI: 10.1038/s42003-024-07125-1.


Longitudinal intravital microscopy of the mouse kidney: inflammatory responses to abdominal imaging windows.

Martinez M, Walsh J, Kamocka M, Lee H, Dunn K Am J Physiol Renal Physiol. 2024; 327(5):F845-F868.

PMID: 39323386 PMC: 11563595. DOI: 10.1152/ajprenal.00071.2024.


Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons.

Rich P, Thiberge S, Scott B, Guo C, Tervo D, Brody C Nat Commun. 2024; 15(1):4154.

PMID: 38755205 PMC: 11099169. DOI: 10.1038/s41467-024-48505-9.


References
1.
Christie R, Bacskai B, Zipfel W, Williams R, Kajdasz S, Webb W . Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J Neurosci. 2001; 21(3):858-64. PMC: 6762315. View

2.
Dong J, Revilla-Sanchez R, Moss S, Haydon P . Multiphoton in vivo imaging of amyloid in animal models of Alzheimer's disease. Neuropharmacology. 2010; 59(4-5):268-75. PMC: 3117428. DOI: 10.1016/j.neuropharm.2010.04.007. View

3.
Hardy J, Selkoe D . The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002; 297(5580):353-6. DOI: 10.1126/science.1072994. View

4.
Bolmont T, Haiss F, Eicke D, Radde R, Mathis C, Klunk W . Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci. 2008; 28(16):4283-92. PMC: 3844768. DOI: 10.1523/JNEUROSCI.4814-07.2008. View

5.
Weiner M, Aisen P, Jack Jr C, Jagust W, Trojanowski J, Shaw L . The Alzheimer's disease neuroimaging initiative: progress report and future plans. Alzheimers Dement. 2010; 6(3):202-11.e7. PMC: 2927112. DOI: 10.1016/j.jalz.2010.03.007. View