» Articles » PMID: 21198117

Identifiability and Observability Analysis for Experimental Design in Nonlinear Dynamical Models

Overview
Journal Chaos
Specialty Science
Date 2011 Jan 5
PMID 21198117
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Dynamical models of cellular processes promise to yield new insights into the underlying systems and their biological interpretation. The processes are usually nonlinear, high dimensional, and time-resolved experimental data of the processes are sparse. Therefore, parameter estimation faces the challenges of structural and practical nonidentifiability. Nonidentifiability of parameters induces nonobservability of trajectories, reducing the predictive power of the model. We will discuss a generic approach for nonlinear models that allows for identifiability and observability analysis by means of a realistic example from systems biology. The results will be utilized to design new experiments that enhance model predictiveness, illustrating the iterative cycle between modeling and experimentation in systems biology.

Citing Articles

Identifying Bayesian optimal experiments for uncertain biochemical pathway models.

Isenberg N, Mertins S, Yoon B, Reyes K, Urban N Sci Rep. 2024; 14(1):15237.

PMID: 38956095 PMC: 11219779. DOI: 10.1038/s41598-024-65196-w.


JointTracker: Real-time inertial kinematic chain tracking with joint position estimation.

Taetz B, Lorenz M, Miezal M, Stricker D, Bleser-Taetz G Open Res Eur. 2024; 4():33.

PMID: 38953016 PMC: 11216284. DOI: 10.12688/openreseurope.16939.1.


In silico model development and optimization of in vitro lung cell population growth.

Mostofinejad A, Romero D, Brinson D, Marin-Araujo A, Bazylak A, Waddell T PLoS One. 2024; 19(5):e0300902.

PMID: 38748626 PMC: 11095723. DOI: 10.1371/journal.pone.0300902.


Evolving Improved Sampling Protocols for Dose-Response Modelling Using Genetic Algorithms with a Profile-Likelihood Metric.

Lam N, Murray R, Docherty P Bull Math Biol. 2024; 86(6):70.

PMID: 38717656 PMC: 11078857. DOI: 10.1007/s11538-024-01304-1.


Bayesian Regression Facilitates Quantitative Modeling of Cell Metabolism.

Groves T, Cowie N, Nielsen L ACS Synth Biol. 2024; 13(4):1205-1214.

PMID: 38579163 PMC: 11036490. DOI: 10.1021/acssynbio.3c00662.