» Articles » PMID: 21106904

Accurate Inference of Transcription Factor Binding from DNA Sequence and Chromatin Accessibility Data

Overview
Journal Genome Res
Specialty Genetics
Date 2010 Nov 26
PMID 21106904
Citations 338
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate functional annotation of regulatory elements is essential for understanding global gene regulation. Here, we report a genome-wide map of 827,000 transcription factor binding sites in human lymphoblastoid cell lines, which is comprised of sites corresponding to 239 position weight matrices of known transcription factor binding motifs, and 49 novel sequence motifs. To generate this map, we developed a probabilistic framework that integrates cell- or tissue-specific experimental data such as histone modifications and DNase I cleavage patterns with genomic information such as gene annotation and evolutionary conservation. Comparison to empirical ChIP-seq data suggests that our method is highly accurate yet has the advantage of targeting many factors in a single assay. We anticipate that this approach will be a valuable tool for genome-wide studies of gene regulation in a wide variety of cell types or tissues under diverse conditions.

Citing Articles

Overview and Prospects of DNA Sequence Visualization.

Wu Y, Xie X, Zhu J, Guan L, Li M Int J Mol Sci. 2025; 26(2).

PMID: 39859192 PMC: 11764684. DOI: 10.3390/ijms26020477.


ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants.

Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S bioRxiv. 2025; .

PMID: 39829783 PMC: 11741299. DOI: 10.1101/2024.12.25.630221.


Functional characterization of eQTLs and asthma risk loci with scATAC-seq across immune cell types and contexts.

Wei J, Resztak J, Ranjbaran A, Alazizi A, Mair-Meijers H, Slatcher R Am J Hum Genet. 2025; 112(2):301-317.

PMID: 39814021 PMC: 11866969. DOI: 10.1016/j.ajhg.2024.12.017.


The evaluation of transcription factor binding site prediction tools in human and Arabidopsis genomes.

Wanniarachchi D, Viswakula S, Wickramasuriya A BMC Bioinformatics. 2024; 25(1):371.

PMID: 39623329 PMC: 11613939. DOI: 10.1186/s12859-024-05995-0.


KAS-ATAC reveals the genome-wide single-stranded accessible chromatin landscape of the human genome.

Kim S, Marinov G, Greenleaf W Genome Res. 2024; 35(1):124-134.

PMID: 39572230 PMC: 11789636. DOI: 10.1101/gr.279621.124.


References
1.
Hesselberth J, Chen X, Zhang Z, Sabo P, Sandstrom R, Reynolds A . Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods. 2009; 6(4):283-9. PMC: 2668528. DOI: 10.1038/nmeth.1313. View

2.
Bulyk M, Huang X, Choo Y, Church G . Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci U S A. 2001; 98(13):7158-63. PMC: 34639. DOI: 10.1073/pnas.111163698. View

3.
Birney E, Stamatoyannopoulos J, Dutta A, Guigo R, Gingeras T, Margulies E . Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007; 447(7146):799-816. PMC: 2212820. DOI: 10.1038/nature05874. View

4.
Su A, Wiltshire T, Batalov S, Lapp H, Ching K, Block D . A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004; 101(16):6062-7. PMC: 395923. DOI: 10.1073/pnas.0400782101. View

5.
Lemon B, Tjian R . Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 2000; 14(20):2551-69. DOI: 10.1101/gad.831000. View