Wu Y, Xie X, Zhu J, Guan L, Li M
Int J Mol Sci. 2025; 26(2).
PMID: 39859192
PMC: 11764684.
DOI: 10.3390/ijms26020477.
Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S
bioRxiv. 2025; .
PMID: 39829783
PMC: 11741299.
DOI: 10.1101/2024.12.25.630221.
Wei J, Resztak J, Ranjbaran A, Alazizi A, Mair-Meijers H, Slatcher R
Am J Hum Genet. 2025; 112(2):301-317.
PMID: 39814021
PMC: 11866969.
DOI: 10.1016/j.ajhg.2024.12.017.
Wanniarachchi D, Viswakula S, Wickramasuriya A
BMC Bioinformatics. 2024; 25(1):371.
PMID: 39623329
PMC: 11613939.
DOI: 10.1186/s12859-024-05995-0.
Kim S, Marinov G, Greenleaf W
Genome Res. 2024; 35(1):124-134.
PMID: 39572230
PMC: 11789636.
DOI: 10.1101/gr.279621.124.
Genome-wide Prediction of Chromatin Accessibility Based on Gene Expression.
Zhou W, Hongkai J
Wiley Interdiscip Rev Comput Stat. 2024; 13(5).
PMID: 39391743
PMC: 11466374.
DOI: 10.1002/wics.1544.
XL-DNase-Seq: Footprinting Analysis of Dynamic Transcription Factors.
Oh K, Aqdas M, Sung M
Methods Mol Biol. 2024; 2846:243-261.
PMID: 39141240
DOI: 10.1007/978-1-0716-4071-5_15.
Coordination among frequent genetic variants imparts substance use susceptibility and pathogenesis.
Veerappa A, Guda C
Front Neurosci. 2024; 18:1332419.
PMID: 38660223
PMC: 11041639.
DOI: 10.3389/fnins.2024.1332419.
Chromatin accessibility profiling methods.
Minnoye L, Marinov G, Krausgruber T, Pan L, Marand A, Secchia S
Nat Rev Methods Primers. 2024; 1.
PMID: 38410680
PMC: 10895463.
DOI: 10.1038/s43586-020-00008-9.
Using methylation data to improve transcription factor binding prediction.
Morgan D, DeMeo D, Glass K
Epigenetics. 2024; 19(1):2309826.
PMID: 38300850
PMC: 10841018.
DOI: 10.1080/15592294.2024.2309826.
Transcriptional changes during isoproterenol-induced cardiac fibrosis in mice.
Nanda D, Pant P, Machha P, Sowpati D, Kumarswamy R
Front Mol Biosci. 2024; 10:1263913.
PMID: 38178867
PMC: 10765171.
DOI: 10.3389/fmolb.2023.1263913.
Accessible gene borders establish a core structural unit for chromatin architecture in Arabidopsis.
Lee H, Seo P
Nucleic Acids Res. 2023; 51(19):10261-10277.
PMID: 37884483
PMC: 10602878.
DOI: 10.1093/nar/gkad710.
Functional interrogation of twenty type 2 diabetes-associated genes using isogenic human embryonic stem cell-derived β-like cells.
Xue D, Narisu N, Taylor D, Zhang M, Grenko C, Taylor H
Cell Metab. 2023; 35(11):1897-1914.e11.
PMID: 37858332
PMC: 10841752.
DOI: 10.1016/j.cmet.2023.09.013.
Widespread effects of DNA methylation and intra-motif dependencies revealed by novel transcription factor binding models.
Grau J, Schmidt F, Schulz M
Nucleic Acids Res. 2023; 51(18):e95.
PMID: 37650641
PMC: 10570048.
DOI: 10.1093/nar/gkad693.
Prediction of mammalian tissue-specific CLOCK-BMAL1 binding to E-box DNA motifs.
Marri D, Filipovic D, Kana O, Tischkau S, Bhattacharya S
Sci Rep. 2023; 13(1):7742.
PMID: 37173345
PMC: 10182026.
DOI: 10.1038/s41598-023-34115-w.
maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks.
Cazares T, Rizvi F, Iyer B, Chen X, Kotliar M, Bejjani A
PLoS Comput Biol. 2023; 19(1):e1010863.
PMID: 36719906
PMC: 9917285.
DOI: 10.1371/journal.pcbi.1010863.
TAMC: A deep-learning approach to predict motif-centric transcriptional factor binding activity based on ATAC-seq profile.
Yang T, Henao R
PLoS Comput Biol. 2022; 18(9):e1009921.
PMID: 36094959
PMC: 9499209.
DOI: 10.1371/journal.pcbi.1009921.
Changes in chromatin accessibility are not concordant with transcriptional changes for single-factor perturbations.
Kiani K, Sanford E, Goyal Y, Raj A
Mol Syst Biol. 2022; 18(9):e10979.
PMID: 36069349
PMC: 9450098.
DOI: 10.15252/msb.202210979.
Multi-Cell-Type Openness-Weighted Association Studies for Trait-Associated Genomic Segments Prioritization.
Song S, Sun H, Liu J, Hou L
Genes (Basel). 2022; 13(7).
PMID: 35886003
PMC: 9323627.
DOI: 10.3390/genes13071220.
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome.
Karimzadeh M, Hoffman M
Genome Biol. 2022; 23(1):126.
PMID: 35681170
PMC: 9185870.
DOI: 10.1186/s13059-022-02690-2.