» Articles » PMID: 21085708

Deletion of the Basement Membrane Heparan Sulfate Proteoglycan Type XVIII Collagen Causes Hypertriglyceridemia in Mice and Humans

Overview
Journal PLoS One
Date 2010 Nov 19
PMID 21085708
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Lipoprotein lipase (Lpl) acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism.

Methods And Findings: We examined mutant mice defective in collagen XVIII (Col18), a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia.

Conclusions: This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.

Citing Articles

Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease.

Shang R, Rodrigues B J Pharm Pharm Sci. 2024; 27:13199.

PMID: 39081272 PMC: 11286490. DOI: 10.3389/jpps.2024.13199.


Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link.

Cai L, Shi L, Peng Z, Sun Y, Chen J Ann Med. 2023; 55(2):2240707.

PMID: 37643318 PMC: 10732198. DOI: 10.1080/07853890.2023.2240707.


Collagens Regulating Adipose Tissue Formation and Functions.

Jaaskelainen I, Petaisto T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen M Biomedicines. 2023; 11(5).

PMID: 37239083 PMC: 10216475. DOI: 10.3390/biomedicines11051412.


Basement membrane proteins in various arterial beds from individuals with and without type 2 diabetes mellitus: a proteome study.

Steffensen L, Iversen X, Hansen R, Jensen P, Thorsen A, Lindholt J Cardiovasc Diabetol. 2021; 20(1):182.

PMID: 34496837 PMC: 8428091. DOI: 10.1186/s12933-021-01375-7.


The role of basement membranes in cardiac biology and disease.

Boland E, Quondamatteo F, Van Agtmael T Biosci Rep. 2021; 41(8).

PMID: 34382650 PMC: 8390786. DOI: 10.1042/BSR20204185.


References
1.
Nybakken K, Perrimon N . Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim Biophys Acta. 2002; 1573(3):280-91. DOI: 10.1016/s0304-4165(02)00395-1. View

2.
Baeg G, Selva E, Goodman R, DasGupta R, Perrimon N . The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors. Dev Biol. 2004; 276(1):89-100. DOI: 10.1016/j.ydbio.2004.08.023. View

3.
Saxena U, Klein M, Goldberg I . Transport of lipoprotein lipase across endothelial cells. Proc Natl Acad Sci U S A. 1991; 88(6):2254-8. PMC: 51209. DOI: 10.1073/pnas.88.6.2254. View

4.
Park P, Pier G, Hinkes M, Bernfield M . Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature. 2001; 411(6833):98-102. DOI: 10.1038/35075100. View

5.
Hirano T, Takahashi T, Saito S, Tajima H, Ebara T, Adachi M . Apoprotein C-III deficiency markedly stimulates triglyceride secretion in vivo: comparison with apoprotein E. Am J Physiol Endocrinol Metab. 2001; 281(4):E665-9. DOI: 10.1152/ajpendo.2001.281.4.E665. View