» Articles » PMID: 21040741

Theoretical Models for Coronary Vascular Biomechanics: Progress & Challenges

Abstract

A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies.

Citing Articles

Mechanosensitive FHL2 tunes endothelial function.

Seetharaman S, Devany J, Kim H, van Bodegraven E, Chmiel T, Tzu-Pin S bioRxiv. 2024; .

PMID: 38948838 PMC: 11212908. DOI: 10.1101/2024.06.16.599227.


An agent-based model of cardiac allograft vasculopathy: toward a better understanding of chronic rejection dynamics.

Serafini E, Corti A, Gallo D, Chiastra C, Li X, Casarin S Front Bioeng Biotechnol. 2023; 11:1190409.

PMID: 37771577 PMC: 10523786. DOI: 10.3389/fbioe.2023.1190409.


Network-driven anomalous transport is a fundamental component of brain microvascular dysfunction.

Goirand F, Le Borgne T, Lorthois S Nat Commun. 2021; 12(1):7295.

PMID: 34911962 PMC: 8674232. DOI: 10.1038/s41467-021-27534-8.


A Numerical Model for Simulating the Hemodynamic Effects of Enhanced External Counterpulsation on Coronary Arteries.

Li B, Xu K, Liu J, Mao B, Li N, Sun H Front Physiol. 2021; 12:656224.

PMID: 33912072 PMC: 8072480. DOI: 10.3389/fphys.2021.656224.


Coronary remodeling and biomechanics: Are we going with the flow in 2020?.

McCallinhart P, Scandling B, Trask A Am J Physiol Heart Circ Physiol. 2020; 320(2):H584-H592.

PMID: 33185115 PMC: 8082794. DOI: 10.1152/ajpheart.00634.2020.


References
1.
Janmey P, Shah J, Janssen K, Schliwa M . Viscoelasticity of intermediate filament networks. Subcell Biochem. 1999; 31:381-97. View

2.
Jacobs J, Algranati D, Lanir Y . Lumped flow modeling in dynamically loaded coronary vessels. J Biomech Eng. 2008; 130(5):054504. DOI: 10.1115/1.2979877. View

3.
BERNE R . Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol. 1963; 204:317-22. DOI: 10.1152/ajplegacy.1963.204.2.317. View

4.
Bakker E, Versluis J, Sipkema P, Vanteeffelen J, Rolf T, Spaan J . Differential structural adaptation to haemodynamics along single rat cremaster arterioles. J Physiol. 2003; 548(Pt 2):549-55. PMC: 2342855. DOI: 10.1113/jphysiol.2002.035907. View

5.
Kajiya F, Zamir M, Carlier S . Cardiac hemodynamics, coronary circulation and interventional cardiology. Ann Biomed Eng. 2006; 33(12):1728-34. DOI: 10.1007/s10439-005-8777-x. View