» Articles » PMID: 20935071

Notch Dimerization is Required for Leukemogenesis and T-cell Development

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2010 Oct 12
PMID 20935071
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Notch signaling regulates myriad cellular functions by activating transcription, yet how Notch selectively activates different transcriptional targets is poorly understood. The core Notch transcriptional activation complex can bind DNA as a monomer, but it can also dimerize on DNA-binding sites that are properly oriented and spaced. However, the significance of Notch dimerization is unknown. Here, we show that dimeric Notch transcriptional complexes are required for T-cell maturation and leukemic transformation but are dispensable for T-cell fate specification from a multipotential precursor. The varying requirements for Notch dimerization result from the differential sensitivity of specific Notch target genes. In particular, c-Myc and pre-T-cell antigen receptor α (Ptcra) are dimerization-dependent targets, whereas Hey1 and CD25 are not. These findings identify functionally important differences in the responsiveness among Notch target genes attributable to the formation of higher-order complexes. Consequently, it may be possible to develop a new class of Notch inhibitors that selectively block outcomes that depend on Notch dimerization (e.g., leukemogenesis).

Citing Articles

The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner.

DeCotiis-Mauro J, Han S, Mello H, Goyeneche C, Marchesini-Tovar G, Jin L J Virol. 2024; 98(8):e0078824.

PMID: 38975769 PMC: 11334469. DOI: 10.1128/jvi.00788-24.


Comprehensive genomic features indicative for Notch responsiveness.

Giaimo B, Friedrich T, Ferrante F, Bartkuhn M, Borggrefe T Nucleic Acids Res. 2024; 52(9):5179-5194.

PMID: 38647081 PMC: 11109962. DOI: 10.1093/nar/gkae292.


Therapeutic targeting nudix hydrolase 1 creates a MYC-driven metabolic vulnerability.

Ye M, Fang Y, Chen L, Song Z, Bao Q, Wang F Nat Commun. 2024; 15(1):2377.

PMID: 38493213 PMC: 10944511. DOI: 10.1038/s41467-024-46572-6.


Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force.

Smyrlaki I, Fordos F, Rocamonde-Lago I, Wang Y, Shen B, Lentini A Nat Commun. 2024; 15(1):465.

PMID: 38238313 PMC: 10796381. DOI: 10.1038/s41467-023-44059-4.


Notch intracellular domains form transcriptionally active heterodimeric complexes on sequence-paired sites.

Gazdik T, Crow J, Lawton T, Munroe C, Theriault H, Wood T Sci Rep. 2024; 14(1):218.

PMID: 38168761 PMC: 10761890. DOI: 10.1038/s41598-023-50763-4.


References
1.
Arnett K, Hass M, McArthur D, Ilagan M, Aster J, Kopan R . Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nat Struct Mol Biol. 2010; 17(11):1312-7. PMC: 3024583. DOI: 10.1038/nsmb.1938. View

2.
Palomero T, Lim W, Odom D, Sulis M, Real P, Margolin A . NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006; 103(48):18261-6. PMC: 1838740. DOI: 10.1073/pnas.0606108103. View

3.
Sambandam A, Maillard I, Zediak V, Xu L, Gerstein R, Aster J . Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol. 2005; 6(7):663-70. DOI: 10.1038/ni1216. View

4.
Schmitt T, Zuniga-Pflucker J . Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 2002; 17(6):749-56. DOI: 10.1016/s1074-7613(02)00474-0. View

5.
Nam Y, Sliz P, Song L, Aster J, Blacklow S . Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006; 124(5):973-83. DOI: 10.1016/j.cell.2005.12.037. View