» Articles » PMID: 20836009

Models at the Single Cell Level

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Many cellular behaviors cannot be completely captured or appropriately described at the cell population level. Noise induced by stochastic chemical reactions, spatially polarized signaling networks, and heterogeneous cell-cell communication are among the many phenomena that require fine-grained analysis. Accordingly, the mathematical models used to describe such systems must be capable of single cell or subcellular resolution. Here, we review techniques for modeling single cells, including models of stochastic chemical kinetics, spatially heterogeneous intracellular signaling, and spatial stochastic systems. We also briefly discuss applications of each type of model.

Citing Articles

Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment.

Kuznetsov I, Berlew E, Glantz S, Hannanta-Anan P, Chow B Cell Rep Methods. 2022; 2(7):100245.

PMID: 35880018 PMC: 9308134. DOI: 10.1016/j.crmeth.2022.100245.


Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies.

Mueller A, Peffers M, Proctor C, Clegg P J Orthop Res. 2017; 35(8):1573-1588.

PMID: 28318047 PMC: 5574007. DOI: 10.1002/jor.23563.


A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast.

Almquist J, Bendrioua L, Adiels C, Goksor M, Hohmann S, Jirstrand M PLoS One. 2015; 10(4):e0124050.

PMID: 25893847 PMC: 4404321. DOI: 10.1371/journal.pone.0124050.


Strength in numbers: quantitative single-molecule RNA detection assays.

Gaspar I, Ephrussi A Wiley Interdiscip Rev Dev Biol. 2015; 4(2):135-50.

PMID: 25645249 PMC: 5024021. DOI: 10.1002/wdev.170.


Measurement and modeling of signaling at the single-cell level.

Kolitz S, Lauffenburger D Biochemistry. 2012; 51(38):7433-43.

PMID: 22954137 PMC: 5621923. DOI: 10.1021/bi300846p.


References
1.
Postma M, van Haastert P . A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys J. 2001; 81(3):1314-23. PMC: 1301612. DOI: 10.1016/S0006-3495(01)75788-8. View

2.
Pearson J . Complex patterns in a simple system. Science. 1993; 261(5118):189-92. DOI: 10.1126/science.261.5118.189. View

3.
Markevich N, Moehren G, Demin O, Kiyatkin A, Hoek J, Kholodenko B . Signal processing at the Ras circuit: what shapes Ras activation patterns?. Syst Biol (Stevenage). 2006; 1(1):104-13. DOI: 10.1049/sb:20045003. View

4.
Le Novere N, Shimizu T . STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics. 2001; 17(6):575-6. DOI: 10.1093/bioinformatics/17.6.575. View

5.
Gierer A, Meinhardt H . A theory of biological pattern formation. Kybernetik. 1972; 12(1):30-9. DOI: 10.1007/BF00289234. View