Ezh2, the Histone Methyltransferase of PRC2, Regulates the Balance Between Self-renewal and Differentiation in the Cerebral Cortex
Overview
Authors
Affiliations
Multipotent progenitor cells of the cerebral cortex balance self-renewal and differentiation to produce complex neural lineages in a fixed temporal order in a cell-autonomous manner. We studied the role of the polycomb epigenetic system, a chromatin-based repressive mechanism, in controlling cortical progenitor cell self-renewal and differentiation. We found that the histone methyltransferase of polycomb repressive complex 2 (PCR2), enhancer of Zeste homolog 2 (Ezh2), is essential for controlling the rate at which development progresses within cortical progenitor cell lineages. Loss of function of Ezh2 removes the repressive mark of trimethylated histone H3 at lysine 27 (H3K27me3) in cortical progenitor cells and also prevents its establishment in postmitotic neurons. Removal of this repressive chromatin modification results in marked up-regulation in gene expression, the consequence of which is a shift in the balance between self-renewal and differentiation toward differentiation, both directly to neurons and indirectly via basal progenitor cell genesis. Although the temporal order of neurogenesis and gliogenesis are broadly conserved under these conditions, the timing of neurogenesis, the relative numbers of different cell types, and the switch to gliogenesis are all altered, narrowing the neurogenic period for progenitor cells and reducing their neuronal output. As a consequence, the timing of cortical development is altered significantly after loss of PRC2 function.
Canonical and non-canonical PRC1 differentially contribute to regulation of neural stem cell fate.
Hoffmann J, Schutze T, Kolodziejczyk A, Kuster K, Krankel A, Reinhardt S Life Sci Alliance. 2025; 8(4).
PMID: 39933923 PMC: 11814486. DOI: 10.26508/lsa.202403006.
PRC2 promotes canalisation during endodermal differentiation.
Holzenspies J, Sengupta D, Bickmore W, Brickman J, Illingworth R PLoS Genet. 2025; 21(1):e1011584.
PMID: 39883738 PMC: 11813121. DOI: 10.1371/journal.pgen.1011584.
Shimaoka K, Hori K, Miyashita S, Inoue Y, Tabe N, Sakamoto A EMBO J. 2025; 44(5):1354-1378.
PMID: 39815005 PMC: 11876313. DOI: 10.1038/s44318-024-00343-7.
Alawathugoda T, Sheikh M, Challagandla A, Dheen S, Emerald B, Ansari S J Biol Chem. 2025; 301(2):108173.
PMID: 39798880 PMC: 11847741. DOI: 10.1016/j.jbc.2025.108173.
Xu Z, Zhu M, Xie H, Zhu J, Zheng H, Liu X Sci Rep. 2025; 15(1):1283.
PMID: 39779741 PMC: 11711668. DOI: 10.1038/s41598-024-82121-3.