» Articles » PMID: 20479267

Multiscale Modeling of Diffusion in the Early Drosophila Embryo

Overview
Specialty Science
Date 2010 May 19
PMID 20479267
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

We developed a multiscale approach for the computationally efficient modeling of morphogen gradients in the syncytial Drosophila embryo, a single cell with multiple dividing nuclei. By using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of the syncytium and kinetics of nucleocytoplasmic shuttling. One of our main results is an accurate analytical approximation for the effective diffusivity of a morphogen molecule as a function of the nuclear density. We used this expression to explore the dynamics of the Bicoid morphogen gradient, a signal that patterns the anterior-posterior axis of the embryo. A similar approach can be used to analyze the dynamics of all three maternal morphogen gradients in Drosophila.

Citing Articles

Visualizing retinoic acid morphogen gradients.

Schilling T, Sosnik J, Nie Q Methods Cell Biol. 2016; 133:139-63.

PMID: 27263412 PMC: 4933793. DOI: 10.1016/bs.mcb.2016.03.003.


Semi-permeable Diffusion Barriers Enhance Patterning Robustness in the C. elegans Germline.

Cinquin A, Zheng L, Taylor P, Paz A, Zhang L, Chiang M Dev Cell. 2015; 35(4):405-17.

PMID: 26609956 PMC: 4694723. DOI: 10.1016/j.devcel.2015.10.027.


Emergent complexity of the cytoskeleton: from single filaments to tissue.

Huber F, Schnauss J, Ronicke S, Rauch P, Muller K, Futterer C Adv Phys. 2014; 62(1):1-112.

PMID: 24748680 PMC: 3985726. DOI: 10.1080/00018732.2013.771509.


In-silico models of stem cell and developmental systems.

Setty Y Theor Biol Med Model. 2014; 11:1.

PMID: 24401000 PMC: 3896968. DOI: 10.1186/1742-4682-11-1.


Multiscale computational models of complex biological systems.

Walpole J, Papin J, Peirce S Annu Rev Biomed Eng. 2013; 15:137-54.

PMID: 23642247 PMC: 3970111. DOI: 10.1146/annurev-bioeng-071811-150104.


References
1.
Saunders T, Howard M . Morphogen profiles can be optimized to buffer against noise. Phys Rev E Stat Nonlin Soft Matter Phys. 2009; 80(4 Pt 1):041902. DOI: 10.1103/PhysRevE.80.041902. View

2.
Bergmann S, Sandler O, Sberro H, Shnider S, Schejter E, Shilo B . Pre-steady-state decoding of the Bicoid morphogen gradient. PLoS Biol. 2007; 5(2):e46. PMC: 1790957. DOI: 10.1371/journal.pbio.0050046. View

3.
Coppey M, Berezhkovskii A, Kim Y, Boettiger A, Shvartsman S . Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. Dev Biol. 2007; 312(2):623-30. PMC: 2789574. DOI: 10.1016/j.ydbio.2007.09.058. View

4.
Othmer H . A continuum model for coupled cells. J Math Biol. 1983; 17(3):351-69. DOI: 10.1007/BF00276521. View

5.
Kanodia J, Rikhy R, Kim Y, Lund V, Delotto R, Lippincott-Schwartz J . Dynamics of the Dorsal morphogen gradient. Proc Natl Acad Sci U S A. 2009; 106(51):21707-12. PMC: 2799810. DOI: 10.1073/pnas.0912395106. View