» Articles » PMID: 6619666

A Continuum Model for Coupled Cells

Overview
Journal J Math Biol
Date 1983 Jan 1
PMID 6619666
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A continuum model of diffusion-coupled cells that more accurately reflects the presence of low-permeability gap junctions between cells is analyzed. It is shown by a multi-scale analysis that to lowest order the slow evolution of the mean concentration is described by the usual ordinary differential equations for a discrete model. Furthermore, stable non-uniform steady solutions are shown to exist in the continuum model of a one component system, whereas this is impossible for the standard reaction-diffusion model of this system. It is also shown how to average the equations in this continuum model to obtain a system of reaction-diffusion equations with constant coefficients.

Citing Articles

Evolutionarily stable movement strategies in reaction-diffusion models with edge behavior.

Maciel G, Cosner C, Cantrell R, Lutscher F J Math Biol. 2019; 80(1-2):61-92.

PMID: 30783745 DOI: 10.1007/s00285-019-01339-2.


Persistence and spread of stage-structured populations in heterogeneous landscapes.

Alqawasmeh Y, Lutscher F J Math Biol. 2019; 78(5):1485-1527.

PMID: 30603992 DOI: 10.1007/s00285-018-1317-8.


Homogenization analysis of invasion dynamics in heterogeneous landscapes with differential bias and motility.

Yurk B J Math Biol. 2017; 77(1):27-54.

PMID: 29032446 DOI: 10.1007/s00285-017-1186-6.


Mechanisms of scaling in pattern formation.

Umulis D, Othmer H Development. 2013; 140(24):4830-43.

PMID: 24301464 PMC: 3848184. DOI: 10.1242/dev.100511.


Multiscale modeling of diffusion in the early Drosophila embryo.

Sample C, Shvartsman S Proc Natl Acad Sci U S A. 2010; 107(22):10092-6.

PMID: 20479267 PMC: 2890479. DOI: 10.1073/pnas.1001139107.


References
1.
Imanaga I . Cell-to-cell diffusion of procion yellow in sheep and calf Purkinje fibers. J Membr Biol. 1974; 16(4):381-8. DOI: 10.1007/BF01872425. View

2.
Othmer H, Pate E . Scale-invariance in reaction-diffusion models of spatial pattern formation. Proc Natl Acad Sci U S A. 1980; 77(7):4180-4. PMC: 349794. DOI: 10.1073/pnas.77.7.4180. View

3.
Wolpert L . Positional information and the spatial pattern of cellular differentiation. J Theor Biol. 1969; 25(1):1-47. DOI: 10.1016/s0022-5193(69)80016-0. View

4.
Bunow B, Kernevez J, Joly G, Thomas D . Pattern formation by reaction-diffusion instabilities: application to morphogenesis in Drosophila. J Theor Biol. 1980; 84(4):629-49. DOI: 10.1016/s0022-5193(80)80024-5. View

5.
Simpson I, Loewenstein W . Permeability of the cell-to-cell membrane channels in mammalian cell juncton. Science. 1979; 205(4404):404-7. DOI: 10.1126/science.377490. View