» Articles » PMID: 20409469

Role of the Transmembrane Potential in the Membrane Proton Leak

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2010 Apr 23
PMID 20409469
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

The molecular mechanism responsible for the regulation of the mitochondrial membrane proton conductance (G) is not clearly understood. This study investigates the role of the transmembrane potential (DeltaPsim) using planar membranes, reconstituted with purified uncoupling proteins (UCP1 and UCP2) and/or unsaturated FA. We show that high DeltaPsim (similar to DeltaPsim in mitochondrial State IV) significantly activates the protonophoric function of UCPs in the presence of FA. The proton conductance increases nonlinearly with DeltaPsim. The application of DeltaPsim up to 220 mV leads to the overriding of the protein inhibition at a constant ATP concentration. Both, the exposure of FA-containing bilayers to high DeltaPsim and the increase of FA membrane concentration bring about the significant exponential Gm increase, implying the contribution of FA in proton leak. Quantitative analysis of the energy barrier for the transport of FA anions in the presence and absence of protein suggests that FA- remain exposed to membrane lipids while crossing the UCP-containing membrane. We believe this study shows that UCPs and FA decrease DeltaPsim more effectively if it is sufficiently high. Thus, the tight regulation of proton conductance and/or FA concentration by DeltaPsim may be key in mitochondrial respiration and metabolism.

Citing Articles

Adenine Nucleotide Translocase 1 Promotes Functional Integrity of Mitochondria via Activating DDIT3-CytC Pathway and Intensifying Actin Filament Structures.

Liu J, Ding W, Chen Q, Peng Y, Kong Y, Ma L Mol Neurobiol. 2025; .

PMID: 40011359 DOI: 10.1007/s12035-025-04710-1.


Exploring the proton transport mechanism of the mitochondrial ADP/ATP carrier: FA-cycling hypothesis and beyond.

Pohl E, Vazdar M, Kreiter J Protein Sci. 2025; 34(3):e70047.

PMID: 39969060 PMC: 11837047. DOI: 10.1002/pro.70047.


The 2-oxoglutarate/malate carrier extends the family of mitochondrial carriers capable of fatty acid and 2,4-dinitrophenol-activated proton transport.

Zuna K, Tyschuk T, Beikbaghban T, Sternberg F, Kreiter J, Pohl E Acta Physiol (Oxf). 2024; 240(6):e14143.

PMID: 38577966 PMC: 11475482. DOI: 10.1111/apha.14143.


Uncoupling Protein 3 Catalyzes the Exchange of C4 Metabolites Similar to UCP2.

Kreiter J, Tyschuk T, Pohl E Biomolecules. 2024; 14(1).

PMID: 38254621 PMC: 10813146. DOI: 10.3390/biom14010021.


Stealthy Player in Lipid Experiments? EDTA Binding to Phosphatidylcholine Membranes Probed by Simulations and Monolayer Experiments.

Vazdar K, Tempra C, Olzynska A, Biriukov D, Cwiklik L, Vazdar M J Phys Chem B. 2023; 127(24):5462-5469.

PMID: 37307026 PMC: 10291544. DOI: 10.1021/acs.jpcb.3c03207.


References
1.
Skulachev V . Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991; 294(3):158-62. DOI: 10.1016/0014-5793(91)80658-p. View

2.
Brand M, Pakay J, Ocloo A, Kokoszka J, Wallace D, Brookes P . The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005; 392(Pt 2):353-62. PMC: 1316271. DOI: 10.1042/BJ20050890. View

3.
Echtay K, Roussel D, St-Pierre J, Jekabsons M, Cadenas S, Stuart J . Superoxide activates mitochondrial uncoupling proteins. Nature. 2002; 415(6867):96-9. DOI: 10.1038/415096a. View

4.
Brown G, Brand M . On the nature of the mitochondrial proton leak. Biochim Biophys Acta. 1991; 1059(1):55-62. DOI: 10.1016/s0005-2728(05)80187-2. View

5.
Lin C, Klingenberg M . Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 1980; 113(2):299-303. DOI: 10.1016/0014-5793(80)80613-2. View