» Articles » PMID: 11159405

Membrane Molecule Reorientation in an Electric Field Recorded by Attenuated Total Reflection Fourier-transform Infrared Spectroscopy

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2001 Feb 13
PMID 11159405
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Electric fields play an important role in the physiological function of macromolecules. Much is known about the role that electric fields play in biological systems, but membrane molecule structure and orientation induced by electric fields remain essentially unknown. In this paper, we present a polarized attenuated total reflection (ATR) experiment we designed to study the effect of electric fields on membrane molecule structure and orientation by Fourier-transform infrared (FTIR) spectroscopy. Two germanium crystals used as the internal reflection element for ATR-FTIR experiments were coated with a thin layer of polystyrene as insulator and used as electrodes to apply an electric field on an oriented stack of membranes made of dioleylphosphatidylcholine (DOPC) and melittin. This experimental set up allowed us for the first time to show fully reversible orientational changes in the lipid headgroups specifically induced by the electric potential difference.

Citing Articles

Temperature-Promoted Giant Unilamellar Vesicle (GUV) Aggregation: A Way of Multicellular Formation.

Wang X, Zhang Y, Xie M, Wang Z, Qiao H Curr Issues Mol Biol. 2023; 45(5):3757-3771.

PMID: 37232711 PMC: 10217545. DOI: 10.3390/cimb45050242.


Role of the transmembrane potential in the membrane proton leak.

Rupprecht A, Sokolenko E, Beck V, Ninnemann O, Jaburek M, Trimbuch T Biophys J. 2010; 98(8):1503-11.

PMID: 20409469 PMC: 2856137. DOI: 10.1016/j.bpj.2009.12.4301.


Biophysical effects of electric fields on membrane water interfaces: a mini review.

Teissie J Eur Biophys J. 2007; 36(8):967-72.

PMID: 17492435 DOI: 10.1007/s00249-007-0168-9.


Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains.

Li L, Wang H, Cheng J Biophys J. 2005; 89(5):3480-90.

PMID: 16126824 PMC: 1366843. DOI: 10.1529/biophysj.105.065607.


Membrane electroporation: a molecular dynamics simulation.

Tarek M Biophys J. 2005; 88(6):4045-53.

PMID: 15764667 PMC: 1305635. DOI: 10.1529/biophysj.104.050617.


References
1.
Chernomordik L, Sukharev S, Popov S, Pastushenko V, Sokirko A, Abidor I . The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta. 1987; 902(3):360-73. DOI: 10.1016/0005-2736(87)90204-5. View

2.
Sugar I . A theory of the electric field-induced phase transition of phospholipid bilayers. Biochim Biophys Acta. 1979; 556(1):72-85. DOI: 10.1016/0005-2736(79)90420-6. View

3.
Dempsey C . The actions of melittin on membranes. Biochim Biophys Acta. 1990; 1031(2):143-61. DOI: 10.1016/0304-4157(90)90006-x. View

4.
Tosteson M, Alvarez O, Hubbell W, Bieganski R, Attenbach C, Caporales L . Primary structure of peptides and ion channels. Role of amino acid side chains in voltage gating of melittin channels. Biophys J. 1990; 58(6):1367-75. PMC: 1281090. DOI: 10.1016/S0006-3495(90)82483-8. View

5.
Stulen G . Electric field effects on lipid membrane structure. Biochim Biophys Acta. 1981; 640(3):621-7. DOI: 10.1016/0005-2736(81)90092-4. View