» Articles » PMID: 20388789

Pseudopodial Actin Dynamics Control Epithelial-mesenchymal Transition in Metastatic Cancer Cells

Overview
Journal Cancer Res
Specialty Oncology
Date 2010 Apr 15
PMID 20388789
Citations 153
Authors
Affiliations
Soon will be listed here.
Abstract

A key cellular process associated with the invasive or metastatic program in many cancers is the transformation of epithelial cells toward a mesenchymal state, a process called epithelial to mesenchymal transition or EMT. Actin-dependent protrusion of cell pseudopodia is a critical element of mesenchymal cell migration and therefore of cancer metastasis. However, whether EMT occurs in human cancers and, in particular, whether it is a prerequisite for tumor cell invasion and metastasis, remains a subject of debate. Microarray and proteomic analysis of actin-rich pseudopodia from six metastatic human tumor cell lines identified 384 mRNAs and 64 proteins common to the pseudopodia of six metastatic human tumor cell lines of various cancer origins leading to the characterization of 19 common pseudopod-specific proteins. Four of these (AHNAK, septin-9, eIF4E, and S100A11) are shown to be essential for pseudopod protrusion and tumor cell migration and invasion. Knockdown of each of these proteins in metastatic cells resulted in reduced actin cytoskeleton dynamics and induction of mesenchymal-epithelial transition (MET) that could be prevented by the stabilization of the actin cytoskeleton. Actin-dependent pseudopodial protrusion and tumor cell migration are therefore determinants of EMT. Protein regulators of pseudopodial actin dynamics may represent unique molecular targets to induce MET and thereby inhibit the metastatic potential of tumor cells.

Citing Articles

Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion.

Hirose S, Osaki T, Kamm R APL Bioeng. 2025; 9(1):016105.

PMID: 39974511 PMC: 11836873. DOI: 10.1063/5.0233329.


Tumor microbiome: roles in tumor initiation, progression, and therapy.

Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y Mol Biomed. 2025; 6(1):9.

PMID: 39921821 PMC: 11807048. DOI: 10.1186/s43556-025-00248-9.


Cancer-cell derived S100A11 promotes macrophage recruitment in ER+ breast cancer.

Lee S, Cho Y, Li Y, Li R, Wong Lau A, Laird M Oncoimmunology. 2024; 13(1):2429186.

PMID: 39587886 PMC: 11601052. DOI: 10.1080/2162402X.2024.2429186.


Discovery of non-genomic drivers of YAP signaling modulating the cell plasticity in CRC tumor lines.

Ogasawara N, Kano Y, Yoneyama Y, Kobayashi S, Watanabe S, Kirino S iScience. 2024; 27(3):109247.

PMID: 38439969 PMC: 10910304. DOI: 10.1016/j.isci.2024.109247.


Research of restricted migration evaluation of MDA-MB-231 cells in 2D and 3D co-culture models.

Du Z, Yang S, Gong Q, Lin Z, Xiao G, Mi S Exp Biol Med (Maywood). 2024; 248(23):2219-2226.

PMID: 38240216 PMC: 10903235. DOI: 10.1177/15353702231214269.