Veronique L, Veronique A, Guillaume C, Jean-Michel C, Francoise A
BMC Microbiol. 2024; 24(1):500.
PMID: 39592958
PMC: 11600622.
DOI: 10.1186/s12866-024-03627-4.
Xu Y, Zhu W, Dai B, Xiao H, Chen J
Acta Biochim Biophys Sin (Shanghai). 2024; 56(9):1278-1288.
PMID: 38887798
PMC: 11532210.
DOI: 10.3724/abbs.2024066.
Soll D
Microbiol Mol Biol Rev. 2024; 88(2):e0004322.
PMID: 38546228
PMC: 11332339.
DOI: 10.1128/mmbr.00043-22.
Lohse M, Ziv N, Johnson A
Genetics. 2023; 225(3).
PMID: 37811798
PMC: 10627253.
DOI: 10.1093/genetics/iyad162.
Sahoo S, Sharma S, Singh M, Singh S, Vamanu E, Rao K
Biomedicines. 2023; 11(7).
PMID: 37509635
PMC: 10377528.
DOI: 10.3390/biomedicines11071997.
Candida albicans exploits N-acetylglucosamine as a gut signal to establish the balance between commensalism and pathogenesis.
Yang D, Zhang M, Su C, Dong B, Lu Y
Nat Commun. 2023; 14(1):3796.
PMID: 37365160
PMC: 10293180.
DOI: 10.1038/s41467-023-39284-w.
Is There a Relationship Between Mating and Pathogenesis in Two Human Fungal Pathogens, and .
Bedekovic T, Usher J
Curr Clin Microbiol Rep. 2023; 10(2):47-54.
PMID: 37151577
PMC: 10154270.
DOI: 10.1007/s40588-023-00192-8.
Fun30 nucleosome remodeller regulates white-to-opaque switching in .
Gao N, Dai B, Nie X, Zhao Q, Zhu W, Chen J
Acta Biochim Biophys Sin (Shanghai). 2023; 55(3):508-517.
PMID: 36896644
PMC: 10160231.
DOI: 10.3724/abbs.2023031.
The defective gut colonization of MAPK mutants is restored by overexpressing the transcriptional regulator of the white opaque transition .
Roman E, Prieto D, Hidalgo-Vico S, Alonso-Monge R, Pla J
Virulence. 2023; 14(1):2174294.
PMID: 36760104
PMC: 9928469.
DOI: 10.1080/21505594.2023.2174294.
Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates.
Brenes L, Johnson A, Lohse M
PLoS One. 2023; 18(1):e0280233.
PMID: 36662710
PMC: 9858334.
DOI: 10.1371/journal.pone.0280233.
A unique cell wall synthetic response evoked by glucosamine determines pathogenicity-associated fungal cellular differentiation.
Hu P, Ding H, Shen L, He G, Liu H, Tian X
PLoS Genet. 2021; 17(10):e1009817.
PMID: 34624015
PMC: 8500725.
DOI: 10.1371/journal.pgen.1009817.
Role of the Promoter of Candida albicans in Opaque Commitment.
Conway T, Conway K, Boksa F, Pujol C, Wessels D, Soll D
mBio. 2021; 12(5):e0232021.
PMID: 34488444
PMC: 8546583.
DOI: 10.1128/mBio.02320-21.
Signal-mediated localization of Candida albicans pheromone response pathway components.
Costa A, Omran R, Law C, Dumeaux V, Whiteway M
G3 (Bethesda). 2021; 11(3).
PMID: 33793759
PMC: 8022970.
DOI: 10.1093/g3journal/jkaa033.
Comparative genomics of white and opaque cell states supports an epigenetic mechanism of phenotypic switching in Candida albicans.
Beekman C, Cuomo C, Bennett R, Ene I
G3 (Bethesda). 2021; 11(2).
PMID: 33585874
PMC: 8366294.
DOI: 10.1093/g3journal/jkab001.
N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast, .
Rao K, Paul S, Ghosh S
J Fungi (Basel). 2021; 7(1).
PMID: 33477740
PMC: 7832408.
DOI: 10.3390/jof7010065.
The Roles of Chromatin Accessibility in Regulating the White-Opaque Phenotypic Switch.
Qasim M, Valle Arevalo A, Nobile C, Hernday A
J Fungi (Basel). 2021; 7(1).
PMID: 33435404
PMC: 7826875.
DOI: 10.3390/jof7010037.
Transcriptional Circuits Regulating Developmental Processes in .
Rodriguez D, Quail M, Hernday A, Nobile C
Front Cell Infect Microbiol. 2021; 10:605711.
PMID: 33425784
PMC: 7793994.
DOI: 10.3389/fcimb.2020.605711.
Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans.
Dai B, Xu Y, Gao N, Chen J
FEBS Open Bio. 2020; 11(3):598-621.
PMID: 33350590
PMC: 7931227.
DOI: 10.1002/2211-5463.13070.
-Acetyl-D-Glucosamine Acts as Adjuvant that Re-Sensitizes Starvation-Induced Antibiotic-Tolerant Population of to β-Lactam.
Wang M, Chan E, Yang C, Chen K, So P, Chen S
iScience. 2020; 23(11):101740.
PMID: 33225246
PMC: 7662850.
DOI: 10.1016/j.isci.2020.101740.
Characterization of a Mutant Defective in All MAPKs Highlights the Major Role of Hog1 in the MAPK Signaling Network.
Correia I, Wilson D, Hube B, Pla J
J Fungi (Basel). 2020; 6(4).
PMID: 33080787
PMC: 7711971.
DOI: 10.3390/jof6040230.