» Articles » PMID: 20237798

Sodium Channelopathies of Skeletal Muscle Result from Gain or Loss of Function

Overview
Journal Pflugers Arch
Specialty Physiology
Date 2010 Mar 19
PMID 20237798
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Five hereditary sodium channelopathies of skeletal muscle have been identified. Prominent symptoms are either myotonia or weakness caused by an increase or decrease of muscle fiber excitability. The voltage-gated sodium channel NaV1.4, initiator of the muscle action potential, is mutated in all five disorders. Pathogenetically, both loss and gain of function mutations have been described, the latter being the more frequent mechanism and involving not just the ion-conducting pore, but aberrant pores as well. The type of channel malfunction is decisive for therapy which consists either of exerting a direct effect on the sodium channel, i.e., by blocking the pore, or of restoring skeletal muscle membrane potential to reduce the fraction of inactivated channels.

Citing Articles

Mechanisms underlying the distinct K+ dependencies of periodic paralysis.

Foy B, Dupont C, Walker 2nd P, Denman K, Engisch K, Rich M J Gen Physiol. 2025; 157(3).

PMID: 39903205 PMC: 11792889. DOI: 10.1085/jgp.202413610.


Clinical and molecular characterization of myotonia congenita using whole-exome sequencing in Egyptian patients.

Elaraby N, Ahmed H, Dawoud H, Ashaat N, Azmy A, Galal E Mol Biol Rep. 2024; 51(1):766.

PMID: 38877370 DOI: 10.1007/s11033-024-09646-8.


Distinguishing Loss-of-Function and Gain-of-Function Variants Using a Random Forest Classification Model Trained on Clinical Features.

Hack J, Horning K, Juroske Short D, Schreiber J, Watkins J, Hammer M Neurol Genet. 2023; 9(3):e200060.

PMID: 37152443 PMC: 10160958. DOI: 10.1212/NXG.0000000000200060.


Predicting functional effects of ion channel variants using new phenotypic machine learning methods.

Bosselmann C, Hedrich U, Lerche H, Pfeifer N PLoS Comput Biol. 2023; 19(3):e1010959.

PMID: 36877742 PMC: 10019634. DOI: 10.1371/journal.pcbi.1010959.


Genetic spectrum and founder effect of non-dystrophic myotonia: a Japanese case series study.

Yuan J, Higuchi Y, Hashiguchi A, Ando M, Yoshimura A, Nakamura T J Neurol. 2022; 269(12):6406-6415.

PMID: 35907044 DOI: 10.1007/s00415-022-11305-6.


References
1.
Dice M, Abbruzzese J, Wheeler J, Groome J, Fujimoto E, Ruben P . Temperature-sensitive defects in paramyotonia congenita mutants R1448C and T1313M. Muscle Nerve. 2004; 30(3):277-88. DOI: 10.1002/mus.20080. View

2.
Mohammadi B, Jurkat-Rott K, Alekov A, Dengler R, Bufler J, Lehmann-Horn F . Preferred mexiletine block of human sodium channels with IVS4 mutations and its pH-dependence. Pharmacogenet Genomics. 2005; 15(4):235-44. DOI: 10.1097/01213011-200504000-00007. View

3.
Fontaine B, Jurkat-Rott K, Reboul J, Plassart E, Rime C, Elbaz A . Mapping of the hypokalaemic periodic paralysis (HypoPP) locus to chromosome 1q31-32 in three European families. Nat Genet. 1994; 6(3):267-72. DOI: 10.1038/ng0394-267. View

4.
Engel A, Ohno K, Shen X, Sine S . Congenital myasthenic syndromes: multiple molecular targets at the neuromuscular junction. Ann N Y Acad Sci. 2003; 998:138-60. DOI: 10.1196/annals.1254.016. View

5.
Fontaine B, Khurana T, Hoffman E, BRUNS G, Haines J, Trofatter J . Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science. 1990; 250(4983):1000-2. DOI: 10.1126/science.2173143. View