» Articles » PMID: 20225254

Soma-germline Interactions That Influence Germline Proliferation in Caenorhabditis Elegans

Overview
Journal Dev Dyn
Publisher Wiley
Date 2010 Mar 13
PMID 20225254
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Caenorhabditis elegans boasts a short lifecycle and high fecundity, two features that make it an attractive and powerful genetic model organism. Several recent studies indicate that germline proliferation, a prerequisite to optimal fecundity, is tightly controlled over the course of development. Cell proliferation control includes regulation of competence to proliferate, a poorly understood aspect of cell fate specification, as well as cell-cycle control. Furthermore, dynamic regulation of cell proliferation occurs in response to multiple external signals. The C. elegans germ line is proving a valuable model for linking genetic, developmental, systemic, and environmental control of cell proliferation. Here, we consider recent studies that contribute to our understanding of germ cell proliferation in C. elegans. We focus primarily on somatic control of germline proliferation, how it differs at different life stages, and how it can be altered in the context of the life cycle and changes in environmental status.

Citing Articles

Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells.

Cheng E, Lu R, Gerhold A PLoS Genet. 2024; 20(12):e1011351.

PMID: 39715269 PMC: 11706408. DOI: 10.1371/journal.pgen.1011351.


Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology.

Braendle C, Paaby A Genetics. 2024; 228(3).

PMID: 39422376 PMC: 11538407. DOI: 10.1093/genetics/iyae151.


Analysis of the C. elegans Germline Stem Cell Pool.

Crittenden S, Seidel H, Kimble J Methods Mol Biol. 2023; 2677:1-36.

PMID: 37464233 DOI: 10.1007/978-1-0716-3259-8_1.


Caenorhabditis elegans septins contribute to the development and structure of the oogenic germline.

Perry J, Werner M, Rivenbark L, Maddox A Cytoskeleton (Hoboken). 2023; 80(7-8):215-227.

PMID: 37265173 PMC: 10524836. DOI: 10.1002/cm.21763.


Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity.

Sue A, Wignall S, Woodruff T, OHalloran T J Assist Reprod Genet. 2022; 39(6):1261-1276.

PMID: 35501415 PMC: 9174417. DOI: 10.1007/s10815-022-02495-z.


References
1.
Eckmann C, Kraemer B, Wickens M, Kimble J . GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in C. elegans. Dev Cell. 2002; 3(5):697-710. DOI: 10.1016/s1534-5807(02)00322-2. View

2.
Tissenbaum H, Ruvkun G . An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998; 148(2):703-17. PMC: 1459840. DOI: 10.1093/genetics/148.2.703. View

3.
Lamont L, Crittenden S, Bernstein D, Wickens M, Kimble J . FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell. 2004; 7(5):697-707. DOI: 10.1016/j.devcel.2004.09.013. View

4.
Killian D, Hubbard E . C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line. Development. 2004; 131(6):1267-78. DOI: 10.1242/dev.01002. View

5.
Wood W, Hecht R, Carr S, Vanderslice R, Wolf N, Hirsh D . Parental effects and phenotypic characterization of mutations that affect early development in Caenorhabditis elegans. Dev Biol. 1980; 74(2):446-69. DOI: 10.1016/0012-1606(80)90445-5. View