» Articles » PMID: 20216337

A Nonsynonymous Variation in MRP2/ABCC2 is Associated with Neurological Adverse Drug Reactions of Carbamazepine in Patients with Epilepsy

Overview
Specialties Genetics
Pharmacology
Date 2010 Mar 11
PMID 20216337
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Objectives: Multidrug resistance protein 2 (MRP2, ABCC2) is involved in the transport of antiepileptic drugs and is upregulated in the brain tissues of patients with epilepsy. Therefore, genetic variations in the MRP2 gene may affect individual drug responses to the antiepileptic agent carbamazepine.

Methods: Associations between MRP2 polymorphisms and the adverse drug reactions (ADRs) of carbamazepine were analyzed using an integrated population genetics and molecular functional approach. In the initial case-control study, five tag single nucleotide polymorphisms in the MRP2 gene were analyzed in 146 patients with epilepsy. Patients were divided into two groups: those who experienced ADRs of the central nervous system and those who did not. An independent replication study was performed using DNA samples from 279 patients.

Results: A nonsynonymous polymorphism, c.1249G>A (p.V417I, rs2273697), showed a strong association with the neurological ADR caused by carbamazepine (P=0.005). Logistic regression analysis with multiple clinical variables indicated that the presence of A allele at the MRP2 c.1249G>A locus was an independent determinant of central nervous system ADR caused by carbamazepine. Moreover, the positive association of c.1249A was reproduced in the replication study (P=0.042, joint P value of the replication=0.001). The functional study using ATPase assay and FACScan flow cytometer indicated that carbamazepine was a substrate of MRP2 and that the 417I variation selectively reduced carbamazepine transport across the cell membrane.

Conclusion: These results strongly suggest that the A-allele of the MRP2 single nucleotide polymorphism c.1247G>A is associated with adverse neurological drug reactions to carbamazepine.

Citing Articles

Pharmacogenetic determinants of tenofovir diphosphate and lamivudine triphosphate concentrations in people with HIV/HBV coinfection.

Bae J, Tantawy M, Gong Y, Langaee T, Lartey M, Ganu V Antimicrob Agents Chemother. 2024; 68(9):e0054924.

PMID: 39078131 PMC: 11373203. DOI: 10.1128/aac.00549-24.


The ABCB1, ABCC2 and RALBP1 polymorphisms are associated with carbamazepine response in epileptic patient: a systematic review.

Boughrara W, Chentouf A Acta Neurol Belg. 2022; 122(4):871-880.

PMID: 35325436 DOI: 10.1007/s13760-022-01920-5.


Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population.

Zhao W, Meng H Bioengineered. 2022; 13(3):7709-7745.

PMID: 35290166 PMC: 9278974. DOI: 10.1080/21655979.2022.2036916.


Pharmacogenetics in Primary Headache Disorders.

Belyaeva I, Subbotina A, Eremenko I, Tarasov V, Chubarev V, Schioth H Front Pharmacol. 2022; 12:820214.

PMID: 35222013 PMC: 8866828. DOI: 10.3389/fphar.2021.820214.


Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters.

Iannaccone T, Sellitto C, Manzo V, Colucci F, Giudice V, Stefanelli B Pharmaceuticals (Basel). 2021; 14(3).

PMID: 33804537 PMC: 8001195. DOI: 10.3390/ph14030204.