» Articles » PMID: 20212086

The H3K27me3 Demethylase DUTX is a Suppressor of Notch- and Rb-dependent Tumors in Drosophila

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 2010 Mar 10
PMID 20212086
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Trimethylated lysine 27 of histone H3 (H3K27me3) is an epigenetic mark for gene silencing and can be demethylated by the JmjC domain of UTX. Excessive H3K27me3 levels can cause tumorigenesis, but little is known about the mechanisms leading to those cancers. Mutants of the Drosophila H3K27me3 demethylase dUTX display some characteristics of Trithorax group mutants and have increased H3K27me3 levels in vivo. Surprisingly, dUTX mutations also affect H3K4me1 levels in a JmjC-independent manner. We show that a disruption of the JmjC domain of dUTX results in a growth advantage for mutant cells over adjacent wild-type tissue due to increased proliferation. The growth advantage of dUTX mutant tissue is caused, at least in part, by increased Notch activity, demonstrating that dUTX is a Notch antagonist. Furthermore, the inactivation of Retinoblastoma (Rbf in Drosophila) contributes to the growth advantage of dUTX mutant tissue. The excessive activation of Notch in dUTX mutant cells leads to tumor-like growth in an Rbf-dependent manner. In summary, these data suggest that dUTX is a suppressor of Notch- and Rbf-dependent tumors in Drosophila melanogaster and may provide a model for UTX-dependent tumorigenesis in humans.

Citing Articles

Double-strand breaks in facultative heterochromatin require specific movements and chromatin changes for efficient repair.

Wensveen M, Dixit A, van Schendel R, Kendek A, Lambooij J, Tijsterman M Nat Commun. 2024; 15(1):8984.

PMID: 39419979 PMC: 11487122. DOI: 10.1038/s41467-024-53313-2.


Loss of GATA6-mediated up-regulation of UTX promotes pancreatic tumorigenesis and progression.

Zhang H, Kong F, Kong X, Jiang T, Ma M, Zheng S Genes Dis. 2023; 11(2):921-934.

PMID: 37692474 PMC: 10491869. DOI: 10.1016/j.gendis.2023.01.019.


MLL3 regulates the tumor suppressor locus in liver cancer.

Zhu C, Soto-Feliciano Y, Morris J, Huang C, Koche R, Ho Y Elife. 2023; 12.

PMID: 37261974 PMC: 10279454. DOI: 10.7554/eLife.80854.


: a powerful model organism to explore histone modifications and their upstream regulations.

Yu Y, Wang S, Wang Z, Gao R, Lee J Epigenetics. 2023; 18(1):2211362.

PMID: 37196184 PMC: 10193919. DOI: 10.1080/15592294.2023.2211362.


Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1.

Deshpande N, Bryk M Curr Genet. 2023; 69(2-3):91-114.

PMID: 37000206 DOI: 10.1007/s00294-023-01265-3.


References
1.
Lee T, Jenner R, Boyer L, Guenther M, Levine S, Kumar R . Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006; 125(2):301-13. PMC: 3773330. DOI: 10.1016/j.cell.2006.02.043. View

2.
Bracken A, Dietrich N, Pasini D, Hansen K, Helin K . Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006; 20(9):1123-36. PMC: 1472472. DOI: 10.1101/gad.381706. View

3.
Boyer L, Plath K, Zeitlinger J, Brambrink T, Medeiros L, Lee T . Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006; 441(7091):349-53. DOI: 10.1038/nature04733. View

4.
Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, van Steensel B . Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet. 2006; 38(6):694-9. DOI: 10.1038/ng1792. View

5.
Schwartz Y, Kahn T, Nix D, Li X, Bourgon R, Biggin M . Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet. 2006; 38(6):700-5. DOI: 10.1038/ng1817. View