» Articles » PMID: 20174687

Molecular Genetic Analysis of the Orsellinic Acid/F9775 Gene Cluster of Aspergillus Nidulans

Overview
Journal Mol Biosyst
Date 2010 Feb 23
PMID 20174687
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

F-9775A and F-9775B are cathepsin K inhibitors that arise from a chromatin remodelling deletant strain of Aspergillus nidulans. A polyketide synthase gene has been determined to be responsible for their formation and for the simpler, archetypical polyketide orsellinic acid. We have discovered simple culture conditions that result in the production of the three compounds, and this facilitates analysis of the genes responsible for their synthesis. We have now analysed the F9775/orsellinic acid gene cluster using a set of targeted deletions. We find that the polyketide synthase alone is required for orsellinic acid biosynthesis and only two additional genes in the cluster are required for F9775 A and B synthesis. Our deletions also yielded the bioactive metabolites gerfelin and diorcinol.

Citing Articles

Comparative genomics of and section .

Theobald S, Vesth T, Nybo J, Frisvad J, Kjaerbolling I, Mondo S Curr Res Microb Sci. 2025; 8:100342.

PMID: 39897699 PMC: 11787670. DOI: 10.1016/j.crmicr.2025.100342.


Genomic Features of and the Transcriptional Regulation of Secondary Metabolite Biosynthesis.

Zhang Y, Wang Y, Yuan X, Zhang H, Zheng Y J Fungi (Basel). 2024; 10(12).

PMID: 39728323 PMC: 11678574. DOI: 10.3390/jof10120826.


Activation of secondary metabolite gene clusters in Chaetomium olivaceum via the deletion of a histone deacetylase.

Zhao P, Cao S, Wang J, Lin J, Zhang Y, Liu C Appl Microbiol Biotechnol. 2024; 108(1):332.

PMID: 38734756 PMC: 11088548. DOI: 10.1007/s00253-024-13173-8.


Computer-aided, resistance gene-guided genome mining for proteasome and HMG-CoA reductase inhibitors.

Jenkinson C, Podgorny A, Zhong C, Oakley B J Ind Microbiol Biotechnol. 2023; 50(1).

PMID: 38061800 PMC: 10734572. DOI: 10.1093/jimb/kuad045.


High hydrostatic pressure harnesses the biosynthesis of secondary metabolites via the regulation of polyketide synthesis genes of hadal sediment-derived fungi.

Deng L, Zhong M, Li Y, Hu G, Zhang C, Peng Q Front Microbiol. 2023; 14:1207252.

PMID: 37383634 PMC: 10293889. DOI: 10.3389/fmicb.2023.1207252.


References
1.
Takenaka Y, Tanahashi T, Nagakura N, Hamada N . Phenyl ethers from cultured lichen mycobionts of Graphis scripta var. serpentina and G. rikuzensis. Chem Pharm Bull (Tokyo). 2003; 51(7):794-7. DOI: 10.1248/cpb.51.794. View

2.
Kawatani M, Okumura H, Honda K, Kanoh N, Muroi M, Dohmae N . The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I. Proc Natl Acad Sci U S A. 2008; 105(33):11691-6. PMC: 2575282. DOI: 10.1073/pnas.0712239105. View

3.
Bailey A, Cox R, Harley K, Lazarus C, Simpson T, Skellam E . Characterisation of 3-methylorcinaldehyde synthase (MOS) in Acremonium strictum: first observation of a reductive release mechanism during polyketide biosynthesis. Chem Commun (Camb). 2007; (39):4053-5. DOI: 10.1039/b708614h. View

4.
He J, Wijeratne E, Bashyal B, Zhan J, Seliga C, Liu M . Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of Sonoran desert plants. J Nat Prod. 2004; 67(12):1985-91. DOI: 10.1021/np040139d. View

5.
Kennedy J, Auclair K, Kendrew S, Park C, Vederas J, Hutchinson C . Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science. 1999; 284(5418):1368-72. DOI: 10.1126/science.284.5418.1368. View