» Articles » PMID: 20171278

Genome-wide Analysis of the VDR/RXR Cistrome in Osteoblast Cells Provides New Mechanistic Insight into the Actions of the Vitamin D Hormone

Overview
Date 2010 Feb 23
PMID 20171278
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

The vitamin D receptor (VDR) mediates the actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in target cells and tissues by orchestrating the expression of gene networks responsible for vitamin D-induced phenotypes. The molecular mechanisms of these regulatory systems have been studied for decades under the principle that transcriptional regulation occurs near the transcriptional start site of the gene. However, this now appears to be an outdated view of transcriptional control. In this study, we examined the genome-wide chromatin immunoprecipitation on microarray (ChIP-chip) across pre-osteoblastic cells for VDR, retinoid X receptor (RXR), RNA polymerase II, and histone H4 acetylation (H4ac). We uncovered potential regulatory mechanisms for genes important to osteoblast biology as well as skeletal formation under the control of 1,25(OH)2D3. We found that VDR, along with RXR and H4ac, binds to distal regions 43% of the time; and within gene introns and exons 44%, leaving only 13% of activation at traditional promoter regions. Here, we briefly summarize our findings for all the VDR/RXR cis-acting transcriptional elements (VDR/RXR cistrome) in pre-osteoblastic cells, MC3T3-E1, provide a few examples of this dynamic control by VDR and 1,25(OH)2D3, and demonstrate that distal transcriptional control contributes to the majority of vitamin D3-mediated transcription.

Citing Articles

In Vivo Contribution of Cyp24a1 Promoter Vitamin D Response Elements.

Meyer M, Lee S, Towne J, Cichanski S, Kaufmann M, Jones G Endocrinology. 2024; 165(11).

PMID: 39363152 PMC: 11487884. DOI: 10.1210/endocr/bqae134.


contribution of promoter vitamin D response elements.

Meyer M, Lee S, Towne J, Cichanski S, Kaufmann M, Jones G bioRxiv. 2024; .

PMID: 39229197 PMC: 11370538. DOI: 10.1101/2024.08.23.609393.


The role of vitamin D3 in follicle development.

Li M, Hu S, Sun J, Zhang Y J Ovarian Res. 2024; 17(1):148.

PMID: 39020390 PMC: 11253454. DOI: 10.1186/s13048-024-01454-9.


Vitamin D-A New Therapeutic Target in the Management of Type 2 Diabetes Patients.

Albai O, Braha A, Timar B, Golu I, Timar R J Clin Med. 2024; 13(5).

PMID: 38592202 PMC: 10931811. DOI: 10.3390/jcm13051390.


Molecular insights into mineralotropic hormone inter-regulation.

Pike J, Lee S, Meyer M Front Endocrinol (Lausanne). 2023; 14:1213361.

PMID: 37441497 PMC: 10334211. DOI: 10.3389/fendo.2023.1213361.


References
1.
Kim S, Yamazaki M, Zella L, Meyer M, Fretz J, Shevde N . Multiple enhancer regions located at significant distances upstream of the transcriptional start site mediate RANKL gene expression in response to 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 2007; 103(3-5):430-4. PMC: 1892901. DOI: 10.1016/j.jsbmb.2006.12.020. View

2.
Meyer M, Watanuki M, Kim S, Shevde N, Pike J . The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Mol Endocrinol. 2006; 20(6):1447-61. DOI: 10.1210/me.2006-0031. View

3.
Welboren W, van Driel M, Janssen-Megens E, van Heeringen S, Sweep F, Span P . ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 2009; 28(10):1418-28. PMC: 2688537. DOI: 10.1038/emboj.2009.88. View

4.
Jurutka P, Whitfield G, Hsieh J, Thompson P, Haussler C, Haussler M . Molecular nature of the vitamin D receptor and its role in regulation of gene expression. Rev Endocr Metab Disord. 2001; 2(2):203-16. DOI: 10.1023/a:1010062929140. View

5.
Irizarry R, Hobbs B, Collin F, Beazer-Barclay Y, Antonellis K, Scherf U . Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4(2):249-64. DOI: 10.1093/biostatistics/4.2.249. View