Dhahri S, Marliere C
ACS Omega. 2024; 9(47):46950-46959.
PMID: 39619514
PMC: 11603319.
DOI: 10.1021/acsomega.4c06349.
Budinger D, Baker V, Heneka M
Results Probl Cell Differ. 2024; 73:203-227.
PMID: 39242381
DOI: 10.1007/978-3-031-62036-2_10.
Zhao Z, Satarifard V, Lipowsky R, Dimova R
Proc Natl Acad Sci U S A. 2024; 121(26):e2321579121.
PMID: 38900795
PMC: 11214096.
DOI: 10.1073/pnas.2321579121.
Ceran Y, Erguder H, Ladner K, Korenfeld S, Deniz K, Padmanabhan S
Cancers (Basel). 2022; 14(19).
PMID: 36230881
PMC: 9562025.
DOI: 10.3390/cancers14194958.
Subramaniam M, Iyer M, Nair A, Venkatesan D, Mathavan S, Eruppakotte N
Genes Dis. 2022; 9(3):610-637.
PMID: 35782976
PMC: 9243399.
DOI: 10.1016/j.gendis.2020.11.020.
Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging.
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C
J Assist Reprod Genet. 2022; 39(5):1011-1025.
PMID: 35499777
PMC: 9107539.
DOI: 10.1007/s10815-022-02438-8.
Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes.
Chen J, Cao J
Sci Rep. 2021; 11(1):16798.
PMID: 34408233
PMC: 8373867.
DOI: 10.1038/s41598-021-96332-5.
Membrane shape remodeling by protein crowding.
Liese S, Carlson A
Biophys J. 2021; 120(12):2482-2489.
PMID: 34023296
PMC: 8390870.
DOI: 10.1016/j.bpj.2021.04.029.
Investigating tunneling nanotubes in ovarian cancer based on two-photon excitation FLIM-FRET.
Wang S, Li Y, Zhao Y, Lin F, Qu J, Liu L
Biomed Opt Express. 2021; 12(4):1962-1973.
PMID: 33996210
PMC: 8086450.
DOI: 10.1364/BOE.418778.
On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding.
Mesarec L, Drab M, Penic S, Kralj-Iglic V, Iglic A
Int J Mol Sci. 2021; 22(5).
PMID: 33652934
PMC: 7956631.
DOI: 10.3390/ijms22052348.
Peering into tunneling nanotubes-The path forward.
Cordero Cervantes D, Zurzolo C
EMBO J. 2021; 40(8):e105789.
PMID: 33646572
PMC: 8047439.
DOI: 10.15252/embj.2020105789.
: The Implications of Direct Intercellular Communication Tunneling Nanotubes in Peritoneal and Other Invasive Malignancies.
Lou E
Front Oncol. 2020; 10:559548.
PMID: 33324545
PMC: 7727447.
DOI: 10.3389/fonc.2020.559548.
Direct Transfer of Mesoporous Silica Nanoparticles between Macrophages and Cancer Cells.
Franco S, Noureddine A, Guo J, Keth J, Paffett M, Brinker C
Cancers (Basel). 2020; 12(10).
PMID: 33050177
PMC: 7600949.
DOI: 10.3390/cancers12102892.
Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges?.
Korenkova O, Pepe A, Zurzolo C
Cell Stress. 2020; 4(2):30-43.
PMID: 32043076
PMC: 6997949.
DOI: 10.15698/cst2020.02.212.
Perspectives of cellular communication through tunneling nanotubes in cancer cells and the connection to radiation effects.
Matejka N, Reindl J
Radiat Oncol. 2019; 14(1):218.
PMID: 31796110
PMC: 6889217.
DOI: 10.1186/s13014-019-1416-8.
Inception Mechanisms of Tunneling Nanotubes.
Drab M, Stopar D, Kralj-Iglic V, Iglic A
Cells. 2019; 8(6).
PMID: 31234435
PMC: 6627088.
DOI: 10.3390/cells8060626.
The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec.
Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu S
J Biol Chem. 2019; 294(18):7177-7193.
PMID: 30877198
PMC: 6509506.
DOI: 10.1074/jbc.RA118.005659.
Mycoplasma exploits mammalian tunneling nanotubes for cell-to-cell dissemination.
Kim B, Lee J, Ko Y
BMB Rep. 2019; 52(8):490-495.
PMID: 30673584
PMC: 6726209.
Transport of solid bodies along tubular membrane tethers.
Daniels D
PLoS One. 2019; 14(1):e0210259.
PMID: 30650122
PMC: 6334941.
DOI: 10.1371/journal.pone.0210259.
Helical organization of microtubules occurs in a minority of tunneling membrane nanotubes in normal and cancer urothelial cells.
Resnik N, Prezelj T, de Luca G, Manders E, Polishchuk R, Veranic P
Sci Rep. 2018; 8(1):17133.
PMID: 30459350
PMC: 6244236.
DOI: 10.1038/s41598-018-35370-y.