» Articles » PMID: 31234435

Inception Mechanisms of Tunneling Nanotubes

Overview
Journal Cells
Publisher MDPI
Date 2019 Jun 26
PMID 31234435
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theoretical and simulation models of nanodomain segregation suggesting the mechanisms of TNT inception and stability. We discuss the coupling of nanodomain segregation with the action of protruding cytoskeletal forces, which are mostly provided in eukaryotic cells by the polymerization of f-actin, and review recent inception mechanisms of TNTs in relation to motor proteins.

Citing Articles

A 'torn bag mechanism' of small extracellular vesicle release via limiting membrane rupture of en bloc released amphisomes (amphiectosomes).

Visnovitz T, Lenzinger D, Koncz A, Vizi P, Barkai T, Vukman K Elife. 2025; 13.

PMID: 39918406 PMC: 11805505. DOI: 10.7554/eLife.95828.


Invisible Bridges: Unveiling the Role and Prospects of Tunneling Nanotubes in Cancer Therapy.

Chen M, Zhao D Mol Pharm. 2024; 21(11):5413-5429.

PMID: 39373242 PMC: 11539062. DOI: 10.1021/acs.molpharmaceut.4c00563.


ROCK inhibitor enhances mitochondrial transfer via tunneling nanotubes in retinal pigment epithelium.

Yuan J, Chen F, Jiang D, Xu Z, Zhang H, Jin Z Theranostics. 2024; 14(15):5762-5777.

PMID: 39346535 PMC: 11426248. DOI: 10.7150/thno.96508.


Mechanical properties of intercellular tunneling nanotubes formed by different mechanisms.

Sun Y, Zhang H, Zavodnik I, Zhao H, Feng X Heliyon. 2024; 10(17):e36265.

PMID: 39263182 PMC: 11386031. DOI: 10.1016/j.heliyon.2024.e36265.


Tunneling Nanotubes in the Brain.

Budinger D, Baker V, Heneka M Results Probl Cell Differ. 2024; 73:203-227.

PMID: 39242381 DOI: 10.1007/978-3-031-62036-2_10.


References
1.
Malik S, Eugenin E . Mechanisms of HIV Neuropathogenesis: Role of Cellular Communication Systems. Curr HIV Res. 2016; 14(5):400-411. PMC: 5052113. DOI: 10.2174/1570162x14666160324124558. View

2.
Raucher D, Sheetz M . Characteristics of a membrane reservoir buffering membrane tension. Biophys J. 1999; 77(4):1992-2002. PMC: 1300480. DOI: 10.1016/S0006-3495(99)77040-2. View

3.
Dawson J, Legg J, Machesky L . Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol. 2006; 16(10):493-8. DOI: 10.1016/j.tcb.2006.08.004. View

4.
Ng W, Bassler B . Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009; 43:197-222. PMC: 4313539. DOI: 10.1146/annurev-genet-102108-134304. View

5.
Iglic A, Slivnik T, Kralj-Iglic V . Elastic properties of biological membranes influenced by attached proteins. J Biomech. 2007; 40(11):2492-500. DOI: 10.1016/j.jbiomech.2006.11.005. View