» Articles » PMID: 20159466

Structure of the Saccharomyces Cerevisiae Cet1-Ceg1 MRNA Capping Apparatus

Overview
Journal Structure
Publisher Cell Press
Date 2010 Feb 18
PMID 20159466
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The 5' guanine-N7 cap is the first cotranscriptional modification of messenger RNA. In Saccharomyces cerevisiae, the first two steps in capping are catalyzed by the RNA triphosphatase Cet1 and RNA guanylyltransferase Ceg1, which form a complex that is directly recruited to phosphorylated RNA polymerase II (RNAP IIo), primarily via contacts between RNAP IIo and Ceg1. A 3.0 A crystal structure of Cet1-Ceg1 revealed a 176 kDa heterotetrameric complex composed of one Cet1 homodimer that associates with two Ceg1 molecules via interactions between the Ceg1 oligonucleotide binding domain and an extended Cet1 WAQKW amino acid motif. The WAQKW motif is followed by a flexible linker that would allow Ceg1 to achieve conformational changes required for capping while maintaining interactions with both Cet1 and RNAP IIo. The impact of mutations as assessed through genetic analysis in S. cerevisiae is consonant with contacts observed in the Cet1-Ceg1 structure.

Citing Articles

RNAP II produces capped 18S and 25S ribosomal RNAs resistant to 5'-monophosphate dependent processive 5' to 3' exonuclease in polymerase switched Saccharomyces cerevisiae.

Rocha M, Gowda B, Fleischmann J BMC Mol Cell Biol. 2022; 23(1):17.

PMID: 35399070 PMC: 8994892. DOI: 10.1186/s12860-022-00417-6.


Crystal structures of the RNA triphosphatase from provide insights into how it recognizes the 5'-end of the RNA substrate.

Takagi Y, Kuwabara N, Dang T, Furukawa K, Ho C J Biol Chem. 2020; 295(27):9076-9086.

PMID: 32381506 PMC: 7335777. DOI: 10.1074/jbc.RA119.011811.


Interplay of mRNA capping and transcription machineries.

Kachaev Z, Lebedeva L, Kozlov E, Shidlovskii Y Biosci Rep. 2020; 40(1).

PMID: 31904821 PMC: 6981093. DOI: 10.1042/BSR20192825.


Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control.

Peck S, Hughes K, Victorino J, Mosley A Wiley Interdiscip Rev RNA. 2019; 10(4):e1529.

PMID: 30848101 PMC: 6570551. DOI: 10.1002/wrna.1529.


Hydrogen peroxide yields mechanistic insights into human mRNA capping enzyme function.

Mullen N, Price D PLoS One. 2017; 12(10):e0186423.

PMID: 29028835 PMC: 5640233. DOI: 10.1371/journal.pone.0186423.


References
1.
Benarroch D, Smith P, Shuman S . Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain. Structure. 2008; 16(4):501-12. DOI: 10.1016/j.str.2008.01.009. View

2.
Schroeder S, Zorio D, Schwer B, Shuman S, Bentley D . A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol Cell. 2004; 13(3):377-87. DOI: 10.1016/s1097-2765(04)00007-3. View

3.
Ho C, Sriskanda V, McCracken S, Bentley D, Schwer B, Shuman S . The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem. 1998; 273(16):9577-85. DOI: 10.1074/jbc.273.16.9577. View

4.
Dahmus M . The role of multisite phosphorylation in the regulation of RNA polymerase II activity. Prog Nucleic Acid Res Mol Biol. 1994; 48:143-79. DOI: 10.1016/s0079-6603(08)60855-7. View

5.
Shuman S . The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. Cold Spring Harb Symp Quant Biol. 2003; 66:301-12. DOI: 10.1101/sqb.2001.66.301. View