Rocha M, Gowda B, Fleischmann J
BMC Mol Cell Biol. 2022; 23(1):17.
PMID: 35399070
PMC: 8994892.
DOI: 10.1186/s12860-022-00417-6.
Takagi Y, Kuwabara N, Dang T, Furukawa K, Ho C
J Biol Chem. 2020; 295(27):9076-9086.
PMID: 32381506
PMC: 7335777.
DOI: 10.1074/jbc.RA119.011811.
Kachaev Z, Lebedeva L, Kozlov E, Shidlovskii Y
Biosci Rep. 2020; 40(1).
PMID: 31904821
PMC: 6981093.
DOI: 10.1042/BSR20192825.
Peck S, Hughes K, Victorino J, Mosley A
Wiley Interdiscip Rev RNA. 2019; 10(4):e1529.
PMID: 30848101
PMC: 6570551.
DOI: 10.1002/wrna.1529.
Mullen N, Price D
PLoS One. 2017; 12(10):e0186423.
PMID: 29028835
PMC: 5640233.
DOI: 10.1371/journal.pone.0186423.
Quick or quality? How mRNA escapes nuclear quality control during stress.
Zander G, Krebber H
RNA Biol. 2017; 14(12):1642-1648.
PMID: 28708448
PMC: 5731798.
DOI: 10.1080/15476286.2017.1345835.
The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II.
Bharati A, Singh N, Kumar V, Kashif M, Singh A, Singh P
Sci Rep. 2016; 6:31294.
PMID: 27503426
PMC: 4977518.
DOI: 10.1038/srep31294.
A general method for rapid and cost-efficient large-scale production of 5' capped RNA.
Fuchs A, Neu A, Sprangers R
RNA. 2016; 22(9):1454-66.
PMID: 27368341
PMC: 4986899.
DOI: 10.1261/rna.056614.116.
mRNA capping: biological functions and applications.
Ramanathan A, Robb G, Chan S
Nucleic Acids Res. 2016; 44(16):7511-26.
PMID: 27317694
PMC: 5027499.
DOI: 10.1093/nar/gkw551.
Fission yeast RNA triphosphatase reads an Spt5 CTD code.
Doamekpor S, Schwer B, Sanchez A, Shuman S, Lima C
RNA. 2014; 21(1):113-23.
PMID: 25414009
PMC: 4274631.
DOI: 10.1261/rna.048181.114.
How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes.
Doamekpor S, Sanchez A, Schwer B, Shuman S, Lima C
Genes Dev. 2014; 28(12):1323-36.
PMID: 24939935
PMC: 4066402.
DOI: 10.1101/gad.242768.114.
Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus.
Kyrieleis O, Chang J, de la Pena M, Shuman S, Cusack S
Structure. 2014; 22(3):452-65.
PMID: 24607143
PMC: 4010090.
DOI: 10.1016/j.str.2013.12.014.
Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II.
Yogesha S, Mayfield J, Zhang Y
Molecules. 2014; 19(2):1481-511.
PMID: 24473209
PMC: 4350670.
DOI: 10.3390/molecules19021481.
Cap-binding complex (CBC).
Gonatopoulos-Pournatzis T, Cowling V
Biochem J. 2013; 457(2):231-42.
PMID: 24354960
PMC: 3901397.
DOI: 10.1042/BJ20131214.
The essential role for the RNA triphosphatase Cet1p in nuclear import of the mRNA capping enzyme Cet1p-Ceg1p complex of Saccharomyces cerevisiae.
Takizawa N, Fujiwara T, Yamasaki M, Saito A, Fukao A, Nomoto A
PLoS One. 2013; 8(10):e78000.
PMID: 24205062
PMC: 3813497.
DOI: 10.1371/journal.pone.0078000.
Cap completion and C-terminal repeat domain kinase recruitment underlie the initiation-elongation transition of RNA polymerase II.
Lidschreiber M, Leike K, Cramer P
Mol Cell Biol. 2013; 33(19):3805-16.
PMID: 23878398
PMC: 3811861.
DOI: 10.1128/MCB.00361-13.
Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae.
Garrido-Godino A, Garcia-Lopez M, Navarro F
Mol Cell Biol. 2013; 33(18):3611-26.
PMID: 23836886
PMC: 3753863.
DOI: 10.1128/MCB.00262-13.
Enzymology of RNA cap synthesis.
Ghosh A, Lima C
Wiley Interdiscip Rev RNA. 2011; 1(1):152-72.
PMID: 21956912
PMC: 3962952.
DOI: 10.1002/wrna.19.
The conserved foot domain of RNA pol II associates with proteins involved in transcriptional initiation and/or early elongation.
Garcia-Lopez M, Pelechano V, Miron-Garcia M, Garrido-Godino A, Garcia A, Calvo O
Genetics. 2011; 189(4):1235-48.
PMID: 21954159
PMC: 3241420.
DOI: 10.1534/genetics.111.133215.
Structural insights to how mammalian capping enzyme reads the CTD code.
Ghosh A, Shuman S, Lima C
Mol Cell. 2011; 43(2):299-310.
PMID: 21683636
PMC: 3142331.
DOI: 10.1016/j.molcel.2011.06.001.