» Articles » PMID: 20123131

Hematopoietic Cell Types: Prototype for a Revised Cell Ontology

Abstract

The Cell Ontology (CL) aims for the representation of in vivo and in vitro cell types from all of biology. The CL is a candidate reference ontology of the OBO Foundry and requires extensive revision to bring it up to current standards for biomedical ontologies, both in its structure and its coverage of various subfields of biology. We have now addressed the specific content of one area of the CL, the section of the ontology dealing with hematopoietic cells. This section has been extensively revised to improve its content and eliminate multiple inheritance in the asserted hierarchy, and the groundwork has been laid for structuring the hematopoietic cell type terms as cross-products incorporating logical definitions built from relationships to external ontologies, such as the Protein Ontology and the Gene Ontology. The methods and improvements to the CL in this area represent a paradigm for improvement of the entire ontology over time.

Citing Articles

A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets.

Doddahonnaiah D, Lenehan P, Hughes T, Zemmour D, Garcia-Rivera E, Venkatakrishnan A Genes (Basel). 2021; 12(6).

PMID: 34200671 PMC: 8229796. DOI: 10.3390/genes12060898.


A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing.

Aevermann B, Zhang Y, Novotny M, Keshk M, Bakken T, Miller J Genome Res. 2021; 31(10):1767-1780.

PMID: 34088715 PMC: 8494219. DOI: 10.1101/gr.275569.121.


Ontology-guided segmentation and object identification for developmental mouse lung immunofluorescent images.

Masci A, White S, Neely B, Ardini-Polaske M, Hill C, Misra R BMC Bioinformatics. 2021; 22(1):82.

PMID: 33622235 PMC: 7901098. DOI: 10.1186/s12859-021-04008-8.


The Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST).

Toure V, Vercruysse S, Acencio M, Lovering R, Orchard S, Bradley G Bioinformatics. 2020; 36(24):5712-5718.

PMID: 32637990 PMC: 8023674. DOI: 10.1093/bioinformatics/btaa622.


An ontology for representing hematologic malignancies: the cancer cell ontology.

Serra L, Duncan W, Diehl A BMC Bioinformatics. 2019; 20(Suppl 5):181.

PMID: 31272372 PMC: 6509834. DOI: 10.1186/s12859-019-2722-8.


References
1.
Mungall C, Bada M, Berardini T, Deegan J, Ireland A, Harris M . Cross-product extensions of the Gene Ontology. J Biomed Inform. 2010; 44(1):80-6. PMC: 2910209. DOI: 10.1016/j.jbi.2010.02.002. View

2.
Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W . The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007; 25(11):1251-5. PMC: 2814061. DOI: 10.1038/nbt1346. View

3.
Bard J, Rhee S, Ashburner M . An ontology for cell types. Genome Biol. 2005; 6(2):R21. PMC: 551541. DOI: 10.1186/gb-2005-6-2-r21. View

4.
Natale D, Arighi C, Barker W, Blake J, Chang T, Hu Z . Framework for a protein ontology. BMC Bioinformatics. 2007; 8 Suppl 9:S1. PMC: 2217659. DOI: 10.1186/1471-2105-8-S9-S1. View

5.
Diehl A, Lee J, Scheuermann R, Blake J . Ontology development for biological systems: immunology. Bioinformatics. 2007; 23(7):913-5. DOI: 10.1093/bioinformatics/btm029. View