» Articles » PMID: 20038798

The Rho/Rac Exchange Factor Vav2 Controls Nitric Oxide-dependent Responses in Mouse Vascular Smooth Muscle Cells

Overview
Journal J Clin Invest
Specialty General Medicine
Date 2009 Dec 30
PMID 20038798
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

The regulation of arterial contractility is essential for blood pressure control. The GTPase RhoA promotes vasoconstriction by modulating the cytoskeleton of vascular smooth muscle cells. Whether other Rho/Rac pathways contribute to blood pressure regulation remains unknown. By studying a hypertensive knockout mouse lacking the Rho/Rac activator Vav2, we have discovered a new signaling pathway involving Vav2, the GTPase Rac1, and the serine/threonine kinase Pak that contributes to nitric oxide-triggered blood vessel relaxation and normotensia. This pathway mediated the Pak-dependent inhibition of phosphodiesterase type 5, a process that favored RhoA inactivation and the subsequent depolymerization of the F-actin cytoskeleton in vascular smooth muscle cells. The inhibition of phosphodiesterase type 5 required its physical interaction with autophosphorylated Pak1 but, unexpectedly, occurred without detectable transphosphorylation events between those 2 proteins. The administration of phosphodiesterase type 5 inhibitors prevented the development of hypertension and cardiovascular disease in Vav2-deficient animals, demonstrating the involvement of this new pathway in blood pressure regulation. Taken together, these results unveil one cause of the cardiovascular phenotype of Vav2-knockout mice, identify a new Rac1/Pak1 signaling pathway, and provide a mechanistic framework for better understanding blood pressure control in physiological and pathological states.

Citing Articles

Nox1/PAK1 is required for angiotensin II-induced vascular inflammation and abdominal aortic aneurysm formation.

He H, Jiang T, Ding M, Zhu Y, Xu X, Huang Y Redox Biol. 2024; 79():103477.

PMID: 39721498 PMC: 11732235. DOI: 10.1016/j.redox.2024.103477.


Inhibiting Intracellular α-Adrenoceptor Surface Translocation Using Decoy Peptides: Identification of an Essential Role of the C-Terminus in Receptor Trafficking.

Raza A, Mohsin S, Saeed F, Ali S, Chotani M Int J Mol Sci. 2023; 24(24).

PMID: 38139390 PMC: 10744278. DOI: 10.3390/ijms242417558.


The Endothelial Dysfunction Could Be a Cause of Heart Failure with Preserved Ejection Fraction Development in a Rat Model.

Dupas T, Pele T, Dhot J, Burban M, Persello A, Aillerie V Oxid Med Cell Longev. 2022; 2022:7377877.

PMID: 35633883 PMC: 9132705. DOI: 10.1155/2022/7377877.


The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function.

Lorenzo-Martin L, Menacho-Marquez M, Fernandez-Parejo N, Rodriguez-Fdez S, Pascual G, Abad A Oncogene. 2022; 41(24):3341-3354.

PMID: 35534539 PMC: 9187518. DOI: 10.1038/s41388-022-02341-7.


Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome?.

Norbury A, Jolly L, Kris L, Carr J Viruses. 2022; 14(2).

PMID: 35215978 PMC: 8874935. DOI: 10.3390/v14020386.


References
1.
Sawada N, Salomone S, Kim H, Kwiatkowski D, Liao J . Regulation of endothelial nitric oxide synthase and postnatal angiogenesis by Rac1. Circ Res. 2008; 103(4):360-8. PMC: 2615563. DOI: 10.1161/CIRCRESAHA.108.178897. View

2.
Guo D, Tan Y, Wang D, Madhusoodanan K, Zheng Y, Maack T . A Rac-cGMP signaling pathway. Cell. 2007; 128(2):341-55. PMC: 1965458. DOI: 10.1016/j.cell.2006.11.048. View

3.
Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T . Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996; 271(34):20246-9. DOI: 10.1074/jbc.271.34.20246. View

4.
Etienne-Manneville S, Hall A . Rho GTPases in cell biology. Nature. 2002; 420(6916):629-35. DOI: 10.1038/nature01148. View

5.
Lin R, Bagrodia S, Cerione R, Manor D . A novel Cdc42Hs mutant induces cellular transformation. Curr Biol. 1997; 7(10):794-7. DOI: 10.1016/s0960-9822(06)00338-1. View