» Articles » PMID: 20004206

Light Activation of Rhodopsin: Insights from Molecular Dynamics Simulations Guided by Solid-state NMR Distance Restraints

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2009 Dec 17
PMID 20004206
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.

Citing Articles

Interaction of Synthetic Cannabinoid Receptor Agonists with Cannabinoid Receptor I: Insights into Activation Molecular Mechanism.

Gavryushov S, Bashilov A, Cherashev-Tumanov K, Kuzmich N, Burykina T, Izotov B Int J Mol Sci. 2023; 24(19).

PMID: 37834323 PMC: 10574015. DOI: 10.3390/ijms241914874.


Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.

de Grip W, Ganapathy S Front Chem. 2022; 10:879609.

PMID: 35815212 PMC: 9257189. DOI: 10.3389/fchem.2022.879609.


Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.

Ryazantsev M, Nikolaev D, Struts A, Brown M J Membr Biol. 2019; 252(4-5):425-449.

PMID: 31570961 DOI: 10.1007/s00232-019-00095-0.


Implications of short time scale dynamics on long time processes.

El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L Struct Dyn. 2018; 4(6):061507.

PMID: 29308419 PMC: 5741438. DOI: 10.1063/1.4996448.


New views on phototransduction from atomic force microscopy and single molecule force spectroscopy on native rods.

Maity S, Ilieva N, Laio A, Torre V, Mazzolini M Sci Rep. 2017; 7(1):12000.

PMID: 28931892 PMC: 5607320. DOI: 10.1038/s41598-017-11912-8.


References
1.
Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau E, Shichida Y . Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci U S A. 2002; 99(9):5982-7. PMC: 122888. DOI: 10.1073/pnas.082666399. View

2.
Vogel R, Siebert F, Ludeke S, Hirshfeld A, Sheves M . Agonists and partial agonists of rhodopsin: retinals with ring modifications. Biochemistry. 2005; 44(35):11684-99. DOI: 10.1021/bi0508587. View

3.
Tajkhorshid E, Baudry J, Schulten K, Suhai S . Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Biophys J. 2000; 78(2):683-93. PMC: 1300671. DOI: 10.1016/S0006-3495(00)76626-4. View

4.
Strader C, Candelore M, HILL W, Sigal I, Dixon R . Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem. 1989; 264(23):13572-8. View

5.
Acharya S, Saad Y, Karnik S . Transducin-alpha C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin. J Biol Chem. 1997; 272(10):6519-24. DOI: 10.1074/jbc.272.10.6519. View