» Articles » PMID: 19997465

Volumetric Microvascular Imaging of Human Retina Using Optical Coherence Tomography with a Novel Motion Contrast Technique

Overview
Journal Opt Express
Date 2009 Dec 10
PMID 19997465
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

Phase variance-based motion contrast imaging is demonstrated using a spectral domain optical coherence tomography system for the in vivo human retina. This contrast technique spatially identifies locations of motion within the retina primarily associated with vasculature. Histogram-based noise analysis of the motion contrast images was used to reduce the motion noise created by transverse eye motion. En face summation images created from the 3D motion contrast data are presented with segmentation of selected retinal layers to provide non-invasive vascular visualization comparable to currently used invasive angiographic imaging. This motion contrast technique has demonstrated the ability to visualize resolution-limited vasculature independent of vessel orientation and flow velocity.

Citing Articles

Advances in OCT Angiography.

Hormel T, Huang D, Jia Y Transl Vis Sci Technol. 2025; 14(3):6.

PMID: 40052848 PMC: 11905608. DOI: 10.1167/tvst.14.3.6.


Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part II.

Goswami N, Anastasio M, Popescu G J Biomed Opt. 2024; 29(Suppl 2):S22714.

PMID: 39070593 PMC: 11283205. DOI: 10.1117/1.JBO.29.S2.S22714.


Cellular-Level Analysis of Retinal Blood Vessel Walls Based on Phase Gradient Images.

Mujat M, Sampani K, Patel A, Sun J, Iftimia N Diagnostics (Basel). 2023; 13(22).

PMID: 37998535 PMC: 10670340. DOI: 10.3390/diagnostics13223399.


Multiple instance learning based classification of diabetic retinopathy in weakly-labeled widefield OCTA en face images.

Matten P, Scherer J, Schlegl T, Nienhaus J, Stino H, Niederleithner M Sci Rep. 2023; 13(1):8713.

PMID: 37248309 PMC: 10226980. DOI: 10.1038/s41598-023-35713-4.


Rotational Distortion and Compensation in Optical Coherence Tomography with Anisotropic Pixel Resolution.

Ma G, Son T, Adejumo T, Yao X Bioengineering (Basel). 2023; 10(3).

PMID: 36978706 PMC: 10045376. DOI: 10.3390/bioengineering10030313.


References
1.
Alam S, Zawadzki R, Choi S, Gerth C, Park S, Morse L . Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging. Ophthalmology. 2006; 113(8):1425-31. PMC: 2586055. DOI: 10.1016/j.ophtha.2006.03.020. View

2.
Leitgeb R, Hitzenberger C, Fercher A . Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2009; 11(8):889-94. DOI: 10.1364/oe.11.000889. View

3.
Wojtkowski M, Srinivasan V, Fujimoto J, Ko T, Schuman J, Kowalczyk A . Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005; 112(10):1734-46. PMC: 1939719. DOI: 10.1016/j.ophtha.2005.05.023. View

4.
Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M . In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2009; 15(10):6121-39. DOI: 10.1364/oe.15.006121. View

5.
Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher A . In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002; 7(3):457-63. DOI: 10.1117/1.1482379. View