» Articles » PMID: 19904028

Bayesian PET Image Reconstruction Incorporating Anato-functional Joint Entropy

Overview
Journal Phys Med Biol
Publisher IOP Publishing
Date 2009 Nov 12
PMID 19904028
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff.Corrections were made to figures 3, 4 and 6, and to the second paragraph of section 3.1 on 13 November 2009. The corrected electronic version is identical to the print version.

Citing Articles

SPECT reconstruction with a trained regularizer using CT-side information: Application to Lu SPECT imaging.

Lim H, Dewaraja Y, Fessler J IEEE Trans Comput Imaging. 2024; 9:846-856.

PMID: 38516350 PMC: 10956080. DOI: 10.1109/tci.2023.3318993.


Anatomically aided PET image reconstruction using deep neural networks.

Xie Z, Li T, Zhang X, Qi W, Asma E, Qi J Med Phys. 2021; 48(9):5244-5258.

PMID: 34129690 PMC: 8510002. DOI: 10.1002/mp.15051.


Effect of PET-MR Inconsistency in the Kernel Image Reconstruction Method.

Deidda D, Karakatsanis N, Robson P, Efthimiou N, Fayad Z, Aykroyd R IEEE Trans Radiat Plasma Med Sci. 2020; 3(4):400-409.

PMID: 33134651 PMC: 7596768. DOI: 10.1109/trpms.2018.2884176.


Intercomparison of MR-informed PET image reconstruction methods.

Bland J, Mehranian A, Belzunce M, Ellis S, da Costa-Luis C, McGinnity C Med Phys. 2019; 46(11):5055-5074.

PMID: 31494961 PMC: 6899618. DOI: 10.1002/mp.13812.


PET image denoising using unsupervised deep learning.

Cui J, Gong K, Guo N, Wu C, Meng X, Kim K Eur J Nucl Med Mol Imaging. 2019; 46(13):2780-2789.

PMID: 31468181 PMC: 7814987. DOI: 10.1007/s00259-019-04468-4.


References
1.
Kemp B, Kim C, Williams J, Ganin A, Lowe V . NEMA NU 2-2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med. 2006; 47(12):1960-7. View

2.
Bowsher J, Johnson V, Turkington T, Jaszczak R, Floyd C, Coleman R . Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging. 1996; 15(5):673-86. DOI: 10.1109/42.538945. View

3.
Rahmim A, Cheng J, Blinder S, Camborde M, Sossi V . Statistical dynamic image reconstruction in state-of-the-art high-resolution PET. Phys Med Biol. 2005; 50(20):4887-912. DOI: 10.1088/0031-9155/50/20/010. View

4.
Lipinski B, Herzog H, Kops E, Oberschelp W . Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information. IEEE Trans Med Imaging. 1997; 16(2):129-36. DOI: 10.1109/42.563658. View

5.
Barrett H, Wilson D, Tsui B . Noise properties of the EM algorithm: I. Theory. Phys Med Biol. 1994; 39(5):833-46. DOI: 10.1088/0031-9155/39/5/004. View