Zhao Y, Wu J, Liu X, Chen X, Wang J
Front Pharmacol. 2025; 15:1467193.
PMID: 39877388
PMC: 11772364.
DOI: 10.3389/fphar.2024.1467193.
Szymczyk P, Majewska M, Nowak J
Int J Mol Sci. 2025; 26(2).
PMID: 39859562
PMC: 11765770.
DOI: 10.3390/ijms26020848.
Bauer L, Ward J, Diaz-Saez L, Sundstrom Y, Tolvanen T, Alarcon Barrera J
Angew Chem Int Ed Engl. 2024; 64(7):e202420149.
PMID: 39740997
PMC: 11811597.
DOI: 10.1002/anie.202420149.
Wang M, Wang J, Ji J, Ma C, Wang H, He J
Comput Struct Biotechnol J. 2024; 23:3714-3729.
PMID: 39525082
PMC: 11544084.
DOI: 10.1016/j.csbj.2024.10.004.
Qian L, Sun R, Aebersold R, Buhlmann P, Sander C, Guo T
Cell Genom. 2024; 4(11):100691.
PMID: 39488205
PMC: 11605689.
DOI: 10.1016/j.xgen.2024.100691.
Progress in mass spectrometry approaches to profiling protein-protein interactions in the studies of the innate immune system.
Kim D, Nita-Lazar A
J Proteins Proteom. 2024; 15(3):545-559.
PMID: 39380887
PMC: 11460538.
DOI: 10.1007/s42485-024-00156-6.
Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers.
Wiest A, Kielkowski P
Beilstein J Org Chem. 2024; 20:2323-2341.
PMID: 39290210
PMC: 11406061.
DOI: 10.3762/bjoc.20.199.
Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics.
Zou M, Zhou H, Gu L, Zhang J, Fang L
Biology (Basel). 2024; 13(8).
PMID: 39194493
PMC: 11352082.
DOI: 10.3390/biology13080555.
Secondary metabolites of mulberry leaves exert anti-lung cancer activity through regulating the PD-L1/PD-1 signaling pathway.
Ye G, Sun X, Li J, Mai Y, Gao R, Zhang J
J Pharm Anal. 2024; 14(6):100926.
PMID: 38974523
PMC: 11226898.
DOI: 10.1016/j.jpha.2023.12.016.
Strophanthidin Induces Apoptosis of Human Lung Adenocarcinoma Cells by Promoting TRAIL-DR5 Signaling.
Tian X, Gu L, Zeng F, Liu X, Zhou Y, Dou Y
Molecules. 2024; 29(4).
PMID: 38398629
PMC: 10892344.
DOI: 10.3390/molecules29040877.
A label free chemoproteomic-based platform to disclose cannabidiol molecular mechanism of action on chronic myelogenous leukemia cancer cells.
Ceccacci S, Corsi L, Spinelli L, Caroli C, Marani M, Anceschi L
Heliyon. 2024; 10(1):e24196.
PMID: 38268604
PMC: 10806336.
DOI: 10.1016/j.heliyon.2024.e24196.
Proteome-Wide Fragment-Based Ligand and Target Discovery.
Forrest I, Parker C
Isr J Chem. 2024; 63(3-4).
PMID: 38213795
PMC: 10783656.
DOI: 10.1002/ijch.202200098.
Automation to Enable High-Throughput Chemical Proteomics.
Lin Z, Gongora J, Liu X, Xie Y, Zhao C, Lv D
J Proteome Res. 2023; 22(12):3676-3682.
PMID: 37917986
PMC: 11037874.
DOI: 10.1021/acs.jproteome.3c00467.
Differential network analysis of ROS1 inhibitors reveals lorlatinib polypharmacology through co-targeting PYK2.
Liao Y, Remsing Rix L, Li X, Fang B, Izumi V, Welsh E
Cell Chem Biol. 2023; 31(2):284-297.e10.
PMID: 37848034
PMC: 10922442.
DOI: 10.1016/j.chembiol.2023.09.011.
Repositioning of clinically approved drug Bazi Bushen capsule for treatment of Aizheimer's disease using network pharmacology approach and experimental validation.
Wang T, Chen M, Li H, Ding G, Song Y, Hou B
Heliyon. 2023; 9(7):e17603.
PMID: 37449101
PMC: 10336525.
DOI: 10.1016/j.heliyon.2023.e17603.
An Orbitrap/Time-of-Flight Mass Spectrometer for Photofragment Ion Imaging and High-Resolution Mass Analysis of Native Macromolecular Assemblies.
Mathew A, Giskes F, Lekkas A, Greisch J, Eijkel G, Anthony I
J Am Soc Mass Spectrom. 2023; 34(7):1359-1371.
PMID: 37319176
PMC: 10326918.
DOI: 10.1021/jasms.3c00053.
Network pharmacology- and molecular docking-based investigation of the therapeutic potential and mechanism of daucosterol against multiple myeloma.
Zeng J, Luo Q, Wang X, Xie W, Dong S, Fu H
Transl Cancer Res. 2023; 12(4):1006-1020.
PMID: 37180669
PMC: 10174762.
DOI: 10.21037/tcr-23-456.
In-silico target prediction by ensemble chemogenomic model based on multi-scale information of chemical structures and protein sequences.
Yang S, Zhang L, Ge Y, Zhang J, Hu J, Shen C
J Cheminform. 2023; 15(1):48.
PMID: 37088813
PMC: 10123967.
DOI: 10.1186/s13321-023-00720-0.
Differential Chemoproteomics Reveals MARK2/3 as Cell Migration-Relevant Targets of the ALK Inhibitor Brigatinib.
Hu Q, Liao Y, Cao J, Fang B, Yun S, Kinose F
Chembiochem. 2023; 24(11):e202200766.
PMID: 36922348
PMC: 10413441.
DOI: 10.1002/cbic.202200766.
Different chemical proteomic approaches to identify the targets of lapatinib.
Kovacevic T, Nujic K, Cindric M, Dragojevic S, Vinter A, Hozic A
J Enzyme Inhib Med Chem. 2023; 38(1):2183809.
PMID: 36856014
PMC: 9980154.
DOI: 10.1080/14756366.2023.2183809.