» Articles » PMID: 19669523

Cell Penetrating Peptides: How Do They Do It?

Overview
Journal J Biol Phys
Specialty Biophysics
Date 2009 Aug 12
PMID 19669523
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recently, we have discovered the possibility of an energy-independent pathway that challenges fundamental concepts associated with protein-membrane interactions (Herce and Garcia, PNAS, 104: 20805 (2007) [1]). It involves the translocation of charged residues across the hydrophobic core of the membrane and the passive diffusion of these highly charged peptides across the membrane through the formation of aqueous toroidal pores. The aim of this review is to discuss the details of the mechanism and interpret some experimental results consistent with this view.

Citing Articles

Cell-penetrating peptide-grafted AAV2 capsids for improved retinal delivery via intravitreal injection.

Wang J, Cui M, Liu H, Guo P, McGowan J, Cheng S Mol Ther Methods Clin Dev. 2025; 33(1):101426.

PMID: 40027263 PMC: 11872077. DOI: 10.1016/j.omtm.2025.101426.


Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane.

Nguyen S, Levintov L, Planalp R, Vashisth H Bioconjug Chem. 2024; 35(3):371-380.

PMID: 38404183 PMC: 10961729. DOI: 10.1021/acs.bioconjchem.3c00561.


Molecular Dynamics Simulations of Drug-Conjugated Cell-Penetrating Peptides.

Ivanczi M, Balogh B, Kis L, Mandity I Pharmaceuticals (Basel). 2023; 16(9).

PMID: 37765059 PMC: 10535489. DOI: 10.3390/ph16091251.


Modeling Adsorption, Conformation, and Orientation of the Fis1 Tail Anchor at the Mitochondrial Outer Membrane.

Ozgur B, Dunn C, Sayar M Membranes (Basel). 2022; 12(8).

PMID: 36005667 PMC: 9413518. DOI: 10.3390/membranes12080752.


Design of Peptides for Membrane Insertion: The Critical Role of Charge Separation.

Povilaitis S, Fathizadeh A, Kogan M, Elber R, Webb L J Phys Chem B. 2022; 126(34):6454-6463.

PMID: 35997537 PMC: 9541189. DOI: 10.1021/acs.jpcb.2c04615.


References
1.
Futaki S . Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliv Rev. 2005; 57(4):547-58. DOI: 10.1016/j.addr.2004.10.009. View

2.
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K . Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2000; 276(8):5836-40. DOI: 10.1074/jbc.M007540200. View

3.
Thoren P, Persson D, Karlsson M, Norden B . The antennapedia peptide penetratin translocates across lipid bilayers - the first direct observation. FEBS Lett. 2000; 482(3):265-8. DOI: 10.1016/s0014-5793(00)02072-x. View

4.
Vives E, Brodin P, Lebleu B . A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997; 272(25):16010-7. DOI: 10.1074/jbc.272.25.16010. View

5.
Richard J, Melikov K, Vives E, Ramos C, Verbeure B, Gait M . Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2002; 278(1):585-90. DOI: 10.1074/jbc.M209548200. View