» Articles » PMID: 19609258

Electron Transfer in Syntrophic Communities of Anaerobic Bacteria and Archaea

Overview
Date 2009 Jul 18
PMID 19609258
Citations 280
Authors
Affiliations
Soon will be listed here.
Abstract

Interspecies electron transfer is a key process in methanogenic and sulphate-reducing environments. Bacteria and archaea that live in syntrophic communities take advantage of the metabolic abilities of their syntrophic partner to overcome energy barriers and break down compounds that they cannot digest by themselves. Here, we review the transfer of hydrogen and formate between bacteria and archaea that helps to sustain growth in syntrophic methanogenic communities. We also describe the process of reverse electron transfer, which is a key requirement in obligately syntrophic interactions. Anaerobic methane oxidation coupled to sulphate reduction is also carried out by syntrophic communities of bacteria and archaea but, as we discuss, the exact mechanism of this syntrophic interaction is not yet understood.

Citing Articles

Bioenergetically constrained dynamical microbial interactions govern the performance and stability of methane-producing bioreactors.

Chang C, Chang C, Lu H, Hsieh C, Wu J NPJ Biofilms Microbiomes. 2025; 11(1):31.

PMID: 39971951 PMC: 11840090. DOI: 10.1038/s41522-025-00668-z.


Core cooperative metabolism in low-complexity CO2-fixing anaerobic microbiota.

Zampieri G, Santinello D, Palu M, Orellana E, Costantini P, Favaro L ISME J. 2025; 19(1).

PMID: 39893570 PMC: 11844248. DOI: 10.1093/ismejo/wraf017.


Groundwater electro-bioremediation via diffuse electro-conductive zones: A critical review.

Aulenta F, Tucci M, Cruz Viggi C, Milia S, Hosseini S, Farru G Environ Sci Ecotechnol. 2024; 23:100516.

PMID: 39703569 PMC: 11655697. DOI: 10.1016/j.ese.2024.100516.


Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy.

Khamespanah E, Asad S, Vanak Z, Mehrshad M Microb Ecol. 2024; 87(1):141.

PMID: 39546027 PMC: 11568061. DOI: 10.1007/s00248-024-02458-0.


Exploring the Prebiotic Potentials of Hydrolyzed Pectins: Mechanisms of Action and Gut Microbiota Modulation.

de Oliveira D, Todorov S, Fabi J Nutrients. 2024; 16(21).

PMID: 39519522 PMC: 11547739. DOI: 10.3390/nu16213689.


References
1.
Latham M, Wolin M . Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol. 1977; 34(3):297-301. PMC: 242646. DOI: 10.1128/aem.34.3.297-301.1977. View

2.
Thauer R, Kaster A, Seedorf H, Buckel W, Hedderich R . Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008; 6(8):579-91. DOI: 10.1038/nrmicro1931. View

3.
Valentine D, Blanton D, Reeburgh W . Hydrogen production by methanogens under low-hydrogen conditions. Arch Microbiol. 2001; 174(6):415-21. DOI: 10.1007/s002030000224. View

4.
Lopez-Garcia P, Moreira D . Tracking microbial biodiversity through molecular and genomic ecology. Res Microbiol. 2008; 159(1):67-73. DOI: 10.1016/j.resmic.2007.11.019. View

5.
Hedderich R, Forzi L . Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol. 2006; 10(2-4):92-104. DOI: 10.1159/000091557. View