Patterson S, Cai Y, Yang Q, Merigan W, Williams D
bioRxiv. 2025; .
PMID: 39763934
PMC: 11702774.
DOI: 10.1101/2024.12.17.628952.
Moon B, Linebach G, Yang A, Jenks S, Rucci M, Poletti M
Opt Express. 2024; 32(18):31142-31161.
PMID: 39573257
PMC: 11595291.
DOI: 10.1364/OE.529199.
Liu R, Wang X, Hoshi S, Zhang Y
Biomed Opt Express. 2024; 15(2):1311-1330.
PMID: 38404341
PMC: 10890855.
DOI: 10.1364/BOE.514447.
Huang B, Fukuyama H, Burns S, Fawzi A
Arterioscler Thromb Vasc Biol. 2023; 44(2):465-476.
PMID: 38152885
PMC: 10842708.
DOI: 10.1161/ATVBAHA.123.320169.
Mozaffari S, Feroldi F, LaRocca F, Tiruveedhula P, Gregory P, Park B
Biomed Opt Express. 2023; 13(11):5909-5925.
PMID: 36733754
PMC: 9872892.
DOI: 10.1364/BOE.467634.
Color, Pattern, and the Retinal Cone Mosaic.
Brainard D
Curr Opin Behav Sci. 2021; 30:41-47.
PMID: 34109261
PMC: 8186451.
DOI: 10.1016/j.cobeha.2019.05.005.
Strip-based digital image registration for distortion minimization and robust eye motion measurement from scanned ophthalmic imaging systems.
Zhang M, Gofas-Salas E, Leonard B, Rui Y, Snyder V, Reecher H
Biomed Opt Express. 2021; 12(4):2353-2372.
PMID: 33996234
PMC: 8086453.
DOI: 10.1364/BOE.418070.
Persistent Dark Cones in Oligocone Trichromacy Revealed by Multimodal Adaptive Optics Ophthalmoscopy.
Li J, Liu T, Flynn O, Turriff A, Liu Z, Ullah E
Front Aging Neurosci. 2021; 13:629214.
PMID: 33767618
PMC: 7985087.
DOI: 10.3389/fnagi.2021.629214.
Adaptive optics: principles and applications in ophthalmology.
Akyol E, Hagag A, Sivaprasad S, Lotery A
Eye (Lond). 2020; 35(1):244-264.
PMID: 33257798
PMC: 7852593.
DOI: 10.1038/s41433-020-01286-z.
Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO).
Wynne N, Carroll J, Duncan J
Prog Retin Eye Res. 2020; 83:100920.
PMID: 33161127
PMC: 8639282.
DOI: 10.1016/j.preteyeres.2020.100920.
High-acuity vision from retinal image motion.
Anderson A, Ratnam K, Roorda A, Olshausen B
J Vis. 2020; 20(7):34.
PMID: 32735342
PMC: 7424138.
DOI: 10.1167/jov.20.7.34.
Temporal information loss in the macaque early visual system.
Horwitz G
PLoS Biol. 2020; 18(1):e3000570.
PMID: 31971946
PMC: 6977937.
DOI: 10.1371/journal.pbio.3000570.
Two-photon microperimetry: sensitivity of human photoreceptors to infrared light.
Ruminski D, Palczewska G, Nowakowski M, Zielinska A, Kefalov V, Komar K
Biomed Opt Express. 2019; 10(9):4551-4567.
PMID: 31565509
PMC: 6757456.
DOI: 10.1364/BOE.10.004551.
Probing Computation in the Primate Visual System at Single-Cone Resolution.
Kling A, Field G, Brainard D, Chichilnisky E
Annu Rev Neurosci. 2019; 42:169-186.
PMID: 30857477
PMC: 6996509.
DOI: 10.1146/annurev-neuro-070918-050233.
Functional architecture of the foveola revealed in the living primate.
Mcgregor J, Yin L, Yang Q, Godat T, Huynh K, Zhang J
PLoS One. 2018; 13(11):e0207102.
PMID: 30485298
PMC: 6261564.
DOI: 10.1371/journal.pone.0207102.
Light propagation and capture in cone photoreceptors.
Meadway A, Sincich L
Biomed Opt Express. 2018; 9(11):5543-5565.
PMID: 30460146
PMC: 6238909.
DOI: 10.1364/BOE.9.005543.
The spectral identity of foveal cones is preserved in hue perception.
Schmidt B, Boehm A, Foote K, Roorda A
J Vis. 2018; 18(11):19.
PMID: 30372729
PMC: 6205561.
DOI: 10.1167/18.11.19.
Clinical Impact of Spontaneous Hyperactivity in Degenerating Retinas: Significance for Diagnosis, Symptoms, and Treatment.
Stasheff S
Front Cell Neurosci. 2018; 12:298.
PMID: 30250425
PMC: 6139326.
DOI: 10.3389/fncel.2018.00298.
Sensations from a single M-cone depend on the activity of surrounding S-cones.
Schmidt B, Sabesan R, Tuten W, Neitz J, Roorda A
Sci Rep. 2018; 8(1):8561.
PMID: 29867090
PMC: 5986870.
DOI: 10.1038/s41598-018-26754-1.
cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe.
LaRocca F, Nankivil D, DuBose T, Toth C, Farsiu S, Izatt J
Nat Photonics. 2018; 10:580-584.
PMID: 29479373
PMC: 5822731.
DOI: 10.1038/nphoton.2016.141.