» Articles » PMID: 19431794

Structural Properties of Phosphatidylcholine in a Monolayer at the Air/water Interface: Neutron Reflection Study and Reexamination of X-ray Reflection Measurements

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2009 May 12
PMID 19431794
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Neutron reflectivities of phosphatidylcholine monolayers in the liquid condensed (LC) phase on ultrapure H(2)O and D(2)O subphases have been measured on a Langmuir film balance. Using a dedicated liquid surface reflectometer, reflectivities down to R = 10(-6) in the momentum transfer range Q(z) = 0-0.4 A(-1) were accessed.In a new approach, by refining neutron reflectivity data from chain-perdeuterated DPPC-d(62) in combination with x-ray measurements on the same monolayer under similar conditions it is shown that the two techniques mutually complement one another. This analysis leads to a detailed conception of the interface structure. It is found that in the LC phase (which is analogous to the L(beta), phase in vesicle dispersions) the head group is interpenetrated with subphase water (4 +/- 2.5 molecules per lipid) and the average tilt angle of the hydrophobic chains from the surface normal is 33 +/- 3 degrees.

Citing Articles

Investigating Ions at Amphiphilic Monolayers with X-ray Fluorescence.

Brezesinski G, Schneck E Langmuir. 2019; 35(26):8531-8542.

PMID: 30835476 PMC: 6727669. DOI: 10.1021/acs.langmuir.9b00191.


Single-molecule 3D imaging of human plasma intermediate-density lipoproteins reveals a polyhedral structure.

Lei D, Yu Y, Kuang Y, Liu J, Krauss R, Ren G Biochim Biophys Acta Mol Cell Biol Lipids. 2018; 1864(3):260-270.

PMID: 30557627 PMC: 6409128. DOI: 10.1016/j.bbalip.2018.12.004.


Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes.

Heinrich F, Losche M Biochim Biophys Acta. 2014; 1838(9):2341-9.

PMID: 24674984 PMC: 4082750. DOI: 10.1016/j.bbamem.2014.03.007.


Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins.

Lhor M, Bernier S, Horchani H, Bussieres S, Cantin L, Desbat B Adv Colloid Interface Sci. 2014; 207:223-39.

PMID: 24560216 PMC: 4028306. DOI: 10.1016/j.cis.2014.01.015.


Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules.

Budvytyte R, Valincius G, Niaura G, Voiciuk V, Mickevicius M, Chapman H Langmuir. 2013; 29(27):8645-56.

PMID: 23745652 PMC: 3753044. DOI: 10.1021/la401132c.


References
1.
McIntosh T, Simon S . Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry. 1986; 25(17):4948-52. DOI: 10.1021/bi00365a034. View

2.
Oldani D, Hauser H, Nichols B, Phillips M . Monolayer characteristics of some glycolipids at the air-water interface. Biochim Biophys Acta. 1975; 382(1):1-9. DOI: 10.1016/0005-2736(75)90366-1. View

3.
Nagle J, Wiener M . Relations for lipid bilayers. Connection of electron density profiles to other structural quantities. Biophys J. 1989; 55(2):309-13. PMC: 1330472. DOI: 10.1016/S0006-3495(89)82806-1. View

4.
Wiener M, Suter R, Nagle J . Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys J. 1989; 55(2):315-25. PMC: 1330473. DOI: 10.1016/S0006-3495(89)82807-3. View

5.
King G, White S . Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys J. 1986; 49(5):1047-54. PMC: 1329685. DOI: 10.1016/S0006-3495(86)83733-X. View