» Articles » PMID: 19217871

Structure of Functional Staphylococcus Aureus Alpha-hemolysin Channels in Tethered Bilayer Lipid Membranes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2009 Feb 17
PMID 19217871
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate a method for simultaneous structure and function determination of integral membrane proteins. Electrical impedance spectroscopy shows that Staphylococcus aureus alpha-hemolysin channels in membranes tethered to gold have the same properties as those formed in free-standing bilayer lipid membranes. Neutron reflectometry provides high-resolution structural information on the interaction between the channel and the disordered membrane, validating predictions based on the channel's x-ray crystal structure. The robust nature of the membrane enabled the precise localization of the protein within 1.1 A. The channel's extramembranous cap domain affects the lipid headgroup region and the alkyl chains in the outer membrane leaflet and significantly dehydrates the headgroups. The results suggest that this technique could be used to elucidate molecular details of the association of other proteins with membranes and may provide structural information on domain organization and stimuli-responsive reorganization for transmembrane proteins in membrane mimics.

Citing Articles

Pro-inflammatory S100A8 Protein Exhibits a Detergent-like Effect on Anionic Lipid Bilayers, as Imaged by High-Speed AFM.

Tamulyte R, Baronaite I, Sulskis D, Smirnovas V, Jankunec M ACS Appl Mater Interfaces. 2024; 17(1):2635-2647.

PMID: 39723944 PMC: 11783366. DOI: 10.1021/acsami.4c18749.


Investigating the Orientation of an Interfacially Adsorbed Monoclonal Antibody and Its Fragments Using Neutron Reflection.

Ruane S, Li Z, Hollowell P, Hughes A, Warwicker J, Webster J Mol Pharm. 2023; 20(3):1643-1656.

PMID: 36795985 PMC: 9996827. DOI: 10.1021/acs.molpharmaceut.2c00864.


Galectin-3 Binding to αβ Integrin in Pore Suspended Biomembranes.

Sarangi N, Shafaq-Zadah M, Berselli G, Robinson J, Dransart E, Di Cicco A J Phys Chem B. 2022; 126(48):10000-10017.

PMID: 36413808 PMC: 9743206. DOI: 10.1021/acs.jpcb.2c05717.


Structural and biophysical properties of farnesylated KRas interacting with the chaperone SmgGDS-558.

Michalak D, Unger B, Lorimer E, Grishaev A, Williams C, Heinrich F Biophys J. 2022; 121(19):3684-3697.

PMID: 35614853 PMC: 9617131. DOI: 10.1016/j.bpj.2022.05.028.


Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers.

Sarangi N, Prabhakaran A, Keyes T Langmuir. 2022; 38(20):6411-6424.

PMID: 35561255 PMC: 9134496. DOI: 10.1021/acs.langmuir.2c00524.


References
1.
Wiener M, White S . Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. II. "Composition-space" refinement method. Biophys J. 1991; 59(1):174-85. PMC: 1281129. DOI: 10.1016/S0006-3495(91)82209-3. View

2.
Coalson R, Kurnikova M . Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans Nanobioscience. 2005; 4(1):81-93. DOI: 10.1109/tnb.2004.842495. View

3.
Henderson R, Unwin P . Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975; 257(5521):28-32. DOI: 10.1038/257028a0. View

4.
Cornell B, King L, Osman P, Raguse B, Wieczorek L, Pace R . A biosensor that uses ion-channel switches. Nature. 1997; 387(6633):580-3. DOI: 10.1038/42432. View

5.
Vockenroth I, Ohm C, Robertson J, McGillivray D, Losche M, Koper I . Stable insulating tethered bilayer lipid membranes. Biointerphases. 2010; 3(2):FA68. DOI: 10.1116/1.2912097. View