» Articles » PMID: 19265801

Multifunctional Ligands Based on Dihydrolipoic Acid and Polyethylene Glycol to Promote Biocompatibility of Quantum Dots

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2009 Mar 7
PMID 19265801
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

One of the common strategies to promote the transfer of quantum dots (QDs) to buffer media and to couple them to biological molecules has relied on cap exchange. We have shown previously that dihydrolipoic acid (DHLA) and polyethylene glycol (PEG)-appended DHLA can effectively replace the native ligands on CdSe-ZnS QDs. Here we explain in detail the synthesis of a series of modular ligands made of the DHLA-PEG motif appended with terminal functional groups. This design allows easy coupling of biomolecules and dyes to the QDs. The ligands are modular and each is comprised of three units: a potential biological functional group (biotin, carboxylic acid and amine) and a DHLA appended at the ends of a short PEG chain, where PEG promotes water solubility and DHLA provides anchoring onto the QD. The resulting QDs are stable over a broad pH range and accessible to simple bioconjugation techniques, such as avidin-biotin binding.

Citing Articles

Ring-Opening Polymerization of Surface Ligands Enables Versatile Optical Patterning and Form Factor Flexibility in Quantum Dot Assemblies.

Lee Y, Shin J, Shin S, Kim E, Lee J, Gwak N Adv Mater. 2025; 37(9):e2415436.

PMID: 39801209 PMC: 11881673. DOI: 10.1002/adma.202415436.


Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy.

Ranjbari F, Fathi F Anticancer Agents Med Chem. 2024; 24(10):733-744.

PMID: 38409708 DOI: 10.2174/0118715206295598240215112910.


Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing.

Jin Z, Yeung J, Zhou J, Retout M, Yim W, Fajtova P ACS Appl Mater Interfaces. 2023; 15(16):20483-20494.

PMID: 37058597 PMC: 10614165. DOI: 10.1021/acsami.3c00862.


Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery.

Khan M, Baskoy S, Yang C, Hong J, Chae J, Ha H Nanoscale Adv. 2023; 5(7):1853-1869.

PMID: 36998671 PMC: 10044484. DOI: 10.1039/d2na00795a.


Carbon nanodots combined with loop-mediated isothermal amplification (LAMP) for detection of African swine fever virus (ASFV).

Cao G, Qiu Y, Long K, Xiong Y, MeimeiShi , JunYang Mikrochim Acta. 2022; 189(9):342.

PMID: 35997837 PMC: 9396581. DOI: 10.1007/s00604-022-05390-7.


References
1.
Clapp A, Medintz I, Mauro J, Fisher B, Bawendi M, Mattoussi H . Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc. 2004; 126(1):301-10. DOI: 10.1021/ja037088b. View

2.
Clapp A, Goldman E, Mattoussi H . Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat Protoc. 2007; 1(3):1258-66. DOI: 10.1038/nprot.2006.184. View

3.
Yu W, Chang E, Falkner J, Zhang J, Al-Somali A, Sayes C . Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007; 129(10):2871-9. DOI: 10.1021/ja067184n. View

4.
Dubertret B, Skourides P, Norris D, Noireaux V, Brivanlou A, Libchaber A . In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002; 298(5599):1759-62. DOI: 10.1126/science.1077194. View

5.
Pons T, Uyeda H, Medintz I, Mattoussi H . Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B. 2006; 110(41):20308-16. DOI: 10.1021/jp065041h. View