» Articles » PMID: 19172991

Centrotemporal Sharp Wave EEG Trait in Rolandic Epilepsy Maps to Elongator Protein Complex 4 (ELP4)

Abstract

Rolandic epilepsy (RE) is the most common human epilepsy, affecting children between 3 and 12 years of age, boys more often than girls (3:2). Focal sharp waves in the centrotemporal area define the electroencephalographic (EEG) trait for the syndrome, are a feature of several related childhood epilepsies and are frequently observed in common developmental disorders (eg, speech dyspraxia, attention deficit hyperactivity disorder and developmental coordination disorder). Here we report the first genome-wide linkage scan in RE for the EEG trait, centrotemporal sharp waves (CTS), with genome-wide linkage of CTS to 11p13 (HLOD 4.30). Pure likelihood statistical analysis refined our linkage peak by fine mapping CTS to variants in Elongator Protein Complex 4 (ELP4) in two independent data sets; the strongest evidence was with rs986527 in intron 9 of ELP4, providing a likelihood ratio of 629:1 (P=0.0002) in favor of an association. Resequencing of ELP4 coding, flanking and promoter regions revealed no significant exonic polymorphisms. This is the first report of a gene implicated in a common focal epilepsy and the first human disease association of ELP4. ELP4 is a component of the Elongator complex, involved in transcription and tRNA modification. Elongator depletion results in the brain-specific downregulation of genes implicated in cell motility and migration. We hypothesize that a non-coding mutation in ELP4 impairs brain-specific Elongator-mediated interaction of genes implicated in brain development, resulting in susceptibility to seizures and neurodevelopmental disorders.

Citing Articles

variants cause childhood partial epilepsy and infantile spasms with favourable outcomes.

He M, Liu L, Luo S, Wang J, Guo J, Wang P J Med Genet. 2024; 61(7):652-660.

PMID: 38508705 PMC: 11228202. DOI: 10.1136/jmg-2023-109725.


A novel ELP1 mutation impairs the function of the Elongator complex and causes a severe neurodevelopmental phenotype.

Kojic M, Abbassi N, Lin T, Jones A, Wakeling E, Clement E J Hum Genet. 2023; 68(7):445-453.

PMID: 36864284 PMC: 10290953. DOI: 10.1038/s10038-023-01135-3.


Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia.

Cheney A, Costello S, Pinkham N, Waldum A, Broadaway S, Cotrina-Vidal M Nat Commun. 2023; 14(1):218.

PMID: 36639365 PMC: 9839693. DOI: 10.1038/s41467-023-35787-8.


Cryo-EM structure of the fully assembled Elongator complex.

Jaciuk M, Scherf D, Kaszuba K, Gaik M, Rau A, Koscielniak A Nucleic Acids Res. 2023; 51(5):2011-2032.

PMID: 36617428 PMC: 10018365. DOI: 10.1093/nar/gkac1232.


Functional divergence of the two Elongator subcomplexes during neurodevelopment.

Gaik M, Kojic M, Stegeman M, Oncu-Oner T, Koscielniak A, Jones A EMBO Mol Med. 2022; 14(7):e15608.

PMID: 35698786 PMC: 9260213. DOI: 10.15252/emmm.202115608.


References
1.
Hodge S, Abreu P, Greenberg D . Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. Am J Hum Genet. 1997; 60(1):217-27. PMC: 1712558. View

2.
Anderson S, COLI R, Daly I, Kichula E, Rork M, Volpi S . Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet. 2001; 68(3):753-8. PMC: 1274486. DOI: 10.1086/318808. View

3.
Abreu P, Hodge S, Greenberg D . Quantification of type I error probabilities for heterogeneity LOD scores. Genet Epidemiol. 2002; 22(2):156-69. DOI: 10.1002/gepi.0155. View

4.
Daw E, Thompson E, Wijsman E . Bias in multipoint linkage analysis arising from map misspecification. Genet Epidemiol. 2000; 19(4):366-80. DOI: 10.1002/1098-2272(200012)19:4<366::AID-GEPI8>3.0.CO;2-F. View

5.
Mezey E, Parmalee A, Szalayova I, Gill S, Cuajungco M, Leyne M . Of splice and men: what does the distribution of IKAP mRNA in the rat tell us about the pathogenesis of familial dysautonomia?. Brain Res. 2003; 983(1-2):209-14. DOI: 10.1016/s0006-8993(03)03090-7. View