» Articles » PMID: 19074369

Genome-wide Detection and Analysis of Hippocampus Core Promoters Using DeepCAGE

Abstract

Finding and characterizing mRNAs, their transcription start sites (TSS), and their associated promoters is a major focus in post-genome biology. Mammalian cells have at least 5-10 magnitudes more TSS than previously believed, and deeper sequencing is necessary to detect all active promoters in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth of novel core promoters that are preferentially used in hippocampus: This is the most comprehensive promoter data set for any tissue to date. Using these data, we present evidence indicating a key role for the Arnt2 transcription factor in hippocampus gene regulation. DeepCAGE can also detect promoters used only in a small subset of cells within the complex tissue.

Citing Articles

: a ggplot-based single-gene viewer for visualizing Ribo-seq and related omics datasets.

Wu H, Kaufman I, Hsu P bioRxiv. 2025; .

PMID: 39975054 PMC: 11838514. DOI: 10.1101/2025.01.30.635743.


Classification of Promoter Sequences from Human Genome.

Zaytsev K, Fedorov A, Korotkov E Int J Mol Sci. 2023; 24(16).

PMID: 37628742 PMC: 10454140. DOI: 10.3390/ijms241612561.


Promoter sequence and architecture determine expression variability and confer robustness to genetic variants.

Einarsson H, Salvatore M, Vaagenso C, Alcaraz N, Bornholdt J, Rennie S Elife. 2022; 11.

PMID: 36377861 PMC: 9844987. DOI: 10.7554/eLife.80943.


Database of Potential Promoter Sequences in the Genome.

Rudenko V, Korotkov E Biology (Basel). 2022; 11(8).

PMID: 35892972 PMC: 9332048. DOI: 10.3390/biology11081117.


Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli.

Choe D, Kim K, Kang M, Lee S, Cho S, Palsson B Nucleic Acids Res. 2022; 50(7):4171-4186.

PMID: 35357499 PMC: 9023263. DOI: 10.1093/nar/gkac206.


References
1.
Muller F, Demeny M, Tora L . New problems in RNA polymerase II transcription initiation: matching the diversity of core promoters with a variety of promoter recognition factors. J Biol Chem. 2007; 282(20):14685-9. DOI: 10.1074/jbc.R700012200. View

2.
Janowski B, Huffman K, Schwartz J, Ram R, Hardy D, Shames D . Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat Chem Biol. 2006; 1(4):216-22. DOI: 10.1038/nchembio725. View

3.
Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume D . Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet. 2007; 8(6):424-36. DOI: 10.1038/nrg2026. View

4.
Eisen M, Spellman P, Brown P, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998; 95(25):14863-8. PMC: 24541. DOI: 10.1073/pnas.95.25.14863. View

5.
Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M . CAGE: cap analysis of gene expression. Nat Methods. 2006; 3(3):211-22. DOI: 10.1038/nmeth0306-211. View